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Abstract
Datalog allows intuitive declarative specification of logical
inference tasks while enjoying efficient implementation
via state-of-the-art engines such as LogicBlox and Souf-
flé. These engines enable high-performance implementa-
tion of complex logical tasks including graph mining, pro-
gram analysis, and business analytics. However, all efficient
modern Datalog solvers make use of shared memory, and
present inherent challenges scalability.

In this paper, we leverage recent insights in parallel
relational algebra and present a methodology for construct-
ing data-parallel deductive databases. Our approach lever-
ages recent developments in parallelizing relational algebra
to create an efficient data-parallel semantics for Datalog.
Based on our methodology, we have implemented the first
MPI-based data-parallel Datalog solver. Our experiments
demonstrate comparable performance and improved single-
node scalability versus Soufflé, a state-of-art solver.

CCS Concepts: •Computingmethodologies→ Parallel
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1 Introduction
Database systems are broadly declarative, typically sup-
porting expressive query languages. Systems for deductive
databases such as Datalog further allow persistent rules
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that specify relations defined intensionally, only in terms
of other relations. Picture a database listing inventory and
sales for an online business where a set of simple declara-
tive rules are used to update an out-of-stock table or a table
listing the total profit earned for each customer. In such sys-
tems, expressive reasoning can be embedded alongside ones
data and used to generate sophisticated analytics on-the-fly
as changes are made.
Effective declarative programming represents a long-

standing dream of computing—exchanging code describing
how to compute for code simply describingwhat to compute.
Instead of requiring programmers to themselves balance the
concerns of correctness, maintainability, and scalability in
each task, declarative programming languages permit users
to focus on the first two concerns, writing high-level, cor-
rect specifications of what should be computed, while al-
lowing the underlying implementation (i.e., how the opera-
tional mechanics of the program work) to be extracted auto-
matically. This puts significant pressure on the implementa-
tion strategy used for declarative languages as it must com-
pete with hand-optimized implementations while remain-
ing generic and effective for a wide variety of applications.

At the same time, this approach presents an opportunity:
as effective means are found for parallelizing the seman-
tics of declarative languages, the strategy will apply imme-
diately to all analytics using these platforms. This is already
the case for bottom-up (forward chaining) logic programs
written in Datalog, and related languages with semantics
that implement first-order or higher-order Horn-clause sat-
isfiability. Such programs may be implemented using high-
performance relational algebra, as is done in the state-of-
the-art logic-programming language Soufflé [30]. Standard
operations on relations such as selection, projection, join,
and union may be used in combination to implement ef-
ficient kernels that infer new facts from available facts in
a (fixed-point) loop. Fortunately, the underlying primitives
used in these kernels are inherently quite data-parallel. For
example, the Cartesian product of two relations,R×S may be
computed by partitioning the left-hand relationR for a set of
threads and then performing a local product Ri × S for each
partition i , of R, in a trivially parallel manner. Unfortunately,
many important inference problems must be scaled beyond
single-node parallelism; e.g., state-of-the-art program anal-
yses for Java that are implemented in Soufflé can take many
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hours and only terminate for lower-precision tunings, tar-
geting real-world codebases [34].
While this approach to parallelizing bottom-up logic pro-

gramming is already being used to great effect on single-
node systems [3], scaling the approach to many-thread clus-
ters using MPI’s inter-process communication paradigms
has proven a significant challenge. Recent work has intro-
duced techniques for managing parallel relational algebra
using MPI on clusters. This has been quite tricky as both
communication and decomposition of the computational
workload over many nodes must be done explicitly in a
dynamically balanced manner, while on shared-memory
systems both these problems become nearly trivial when
using efficient thread-safe data-structures—tools produced
through decades of successful research.

In this paper, we present a synthesis of two ongoing
threads of research: (1) an approach to compiling Datalog-
like languages to relational algebra for synthesizing fast
program analyzers [17], and (2) a scheme for balanced
parallel relational algebra using MPI that addresses com-
munication challenges of putting operations on relations
in a loop [24]. Putting these ideas together, we are able to
present a highly data-parallel deductive database engine
that shows promising scaling on the DOE supercomputer
Theta.

To the literature, we contribute:
1. An approach to developing scalable, data-parallel Dat-

alog solvers using parallel relational algebra. We for-
malize our approach as a parallel relational algebra
machine (PRAM) for which we have implemented a
compiler.

2. An evaluation of kCFA, a core program analysis al-
gorithm, showing higher performance and scalabiliy
compared with Soufflé. In general, we observed vary-
ing but comparable performance and improved rela-
tive scaling in our comparison studies.

2 Background
Our approach synthesizes two foundational threads: compi-
lation of Datalog-like inference languages to relational al-
gebra kernels and recent success enabling the development
of data-parallel relational algebra implementations. In this
section, we present a summary of these developments to
ground our own contributions.

2.1 Relational Algebra
Projection of a relation R restricts it to a particular set of
dimensions α0, . . . ,α j , where α0 < . . . < α j , and is written
Πα0, ...,α j (R) ≜ {(rα0

, . . . , rα j ) | (r0, . . . , rk ) ∈ R}. Renaming
(i.e., recording) columns can be defined in several ways. We
define a renaming operator, ραi /α j (R), to swap two columns,
αi and α j where αi < α j—an operation that can be repeated
to rename/reorder as many columns as desired.

Two relations can also be joined into one on a subset
of columns they have in common. Join combines two re-
lations into one, where a subset of columns are required
to have matching values, and generalizes both intersection
and Cartesian product operations.
To formalize natural join as an operation on such a rela-

tion, we parameterize it by the number of prefix values that
must match, assumed to be the first j of each relation (if they
are not, a renaming operation must come first). The join of
relations R and S on the first j columns is written as R ▷◁j S
and can be defined:

R ▷◁j S ≜{ (r0, . . . , rk , sj , . . . , sm)

| (r0, . . . , rk ) ∈ R ∧ (s0, . . . , sm) ∈ S ∧
∧

i=0..j−1
ri = si }

Naturally a system of relational algebra can support a va-
riety of additional operations or compositions of the above
operations (e.g., join followed by project followed by re-
order) in theory, and usually does in practice for reasons of
efficiency.

2.2 Datalog
Datalog is a bottom-up logic programming language sup-
porting a restricted logic corresponding to first-order
HornSAT—the satisfiability problem for conjunctions of
Horn clauses [1]. A Horn clause is a disjunction of atoms,
all but one of which is negated: a0 ∨¬a1 ∨ . . .∨¬aj . Atoms
are predicates over universally-quantified variables. By De-
Morgan’s laws, Horn clauses may be seen equivalently as
a0 ∨ ¬(a1 ∧ . . . ∧ aj ) or equivalently via implication as
a0 ← a1 ∧ . . . ∧ aj .

A Datalog program is a set of (Horn clause) rules
P(x0, . . . , xk ) ← Q(y0, . . . ,yj ) ∧ . . . ∧ S(z0, . . . , zm). It is
common to have an “input” database of facts called the ex-
tensional database (EDB), consisting of an explicitly listed
(extensional) set of tuples. Running a Datalog program in
terms of some EDB reifies the intensional database (IDB),
all facts (transitively) derivable via the program’s rules. The
following example program computes the uncle relation
from the relations brother and parent :

uncle(x,u) :- parent(x,p), brother(p,u).

Efficient implementation strategies for Datalog would
evaluate this program by first compiling to relational al-
gebra primitives. On shared-memory systems, this would
involve ordering the parent relation so it can be efficiently
joined with brother , then projecting out the shared p

column; this is written Π1,2(ρ0/1( parent ) ▷◁1 brother ).
This reduces optimization of evaluation to efficient imple-
mentation of the relational algebra primitives. We call a set
of RA primitives used to implement a Datalog program a
relational algebra plan (RA plan).
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While some relations can be computed via a fixed num-
ber of RA operations in sequence, others must be computed
via a fixed-point of a set of operations. For example, tran-
sitive closure (TC) of a relation or graph is efficiently im-
plemented via a loop (checking whether a fixed-point has
been achieved) over a set of high-performance RA opera-
tions. Consider the Datalog rules for computing the
ancestor relation:

ancestor(x,p) :- parent(x,p).

ancestor(x,a) :- ancestor(x,ac), parent(ac,a).

The first rule represents a base case that says any parent
is trivially an ancestor, and the second represents the induc-
tive step of inferring that an ancestor ac for x and a parent
a for ac implies an older ancestor a for x.

We can also view parent as an input graph defined as
a set of edges, and view TC computation as a graph min-
ing problem. Computing the transitive closure ancestor ,
of input graph parent , is a simple example of logical in-
ference. From paths of length 0 (an empty graph) and the
existence of edges in graph parent , we may trivially de-
duce the existence of paths of length 0 . . . 1. From paths of
length 0 . . .n and the original edges in graph parent , we
may infer the existence of paths of length 0 . . .n + 1. The
function F parent below performs a single round of inference,
finding paths one edge (parental relationship) longer than
any found previously and exposing new inferences to be
made for the next iteration of F parent . When the computa-
tion reaches a fixed-point, the solution has been found as no
further paths may be deduced from the available facts.

F parent ( ancestor ) ≜ parent

∪ Π1,2(ρ0/1( ancestor ) ▷◁1 parent )

Thefirst rule says that any direct edge in parent implies
a path, in ancestor (taking the role of the left operand of
union in FG ), and the second rule says that any path (x,ac)
and edge (ac,a) imply a path (x,a) (adding edges for the
right operand of union in F parent ). Other kinds of graph
mining problems, such as computing triangles or k-cliques,
can also be naturally implemented as Datalog programs [41].
See Section 4 for several case studies on graph mining and
program analysis applications.

Each Datalog rule may be encoded as a monotonic func-
tion F , mapping databases to databases conjoined with their
immediate consequences, where a fixed-point for F is guar-
anteed to satisfy the corresponding rule. Once a set of func-
tions F0 . . . Fm are constructed (one for each rule), naïve Dat-
alog evaluation operates by iterating the initially empty IDB
and input EDB to amutual fixed-point for F0 . . . Fm . Because

the EDB includes a fixed number of atoms, and because Dat-
alog programs cannot generate new atoms, termination is
guaranteed.
In practice, most “Datalog” implementations are more ex-

pressive than this, and most permit some basic built-in op-
erations (e.g., x!=y ), and frequently will allow construc-
tors for inductive data types, such as linked lists. However,
while most Datalog implementations are ultimately Turing-
complete, they optimize for terminating programs acceler-
ated via fast RA operations.

2.3 Implementation via RA
So far, we have elided important optimization and imple-
mentation details in favor of focusing on Datalog’s seman-
tics. High-performance Datalog solvers employ specializa-
tions of general RA operations that combine sequences
of simple operations (join, project, and rename) into one
efficient combined operation. We have so far presented
the so-called naïve evaluation strategy, recomputing all
previously-discovered facts at every iteration. Efficient im-
plementations employ incrementalization, tracking a fron-
tier of freshly-
discovered facts to produce yet-undiscovered facts. For ex-
ample, when computing transitive closure, another relation
ancestor ∆ is used which only stores the longest ancestry
paths—those discovered in the previous iteration. When
computing paths of length n, in fixed-point iteration n, only
new paths discovered in the previous iteration, paths of
length n − 1, need to be considered, as shorter paths ex-
tended with edges from parent necessarily yield paths
which have been discovered already. This optimization is
known as semi-naïve evaluation [1].

Using semi-naïve evaluation, each non-static relation
(those that may be updated in given iteration, such as
ancestor ) is effectively partitioned into three relations:
ancestor full, ancestor ∆, and ancestor new.ancestor full
stores any facts discovered more than one iteration ago;
ancestor ∆ maintains facts that were newly discovered
in the previous iteration, and is joined with parent each
iteration to discover new facts; and ancestor new holds
these newly discovered facts only just learned in the cur-
rent iteration. At the end of each iteration, ancestor ∆’s
tuples are added to ancestor full, the pointers are swapped
for ancestor ∆ and ancestor new, and ancestor new is
truncated to prepare for the subsequent iteration.

The state of art evaluating Datalog on a single compute
node is perhaps best embodied in the Soufflé engine [17–
19, 30]. Soufflé systematically optimizes the RA kernels
obtained from an input Datalog program, yielding a pro-
gram for an abstract Relational Algebra Machine (RAM).
Figure 1 shows a portion of the exact C++ code produced by
Soufflé (v1.5.1) for the two-rule TC program (indentation
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and code comments have been added by the authors to im-
prove clarity). To compute ρ0/1( ancestor ∆) ▷◁1 parent ,
first the outer relation (the left-hand relation—in this case
T∆) is partitioned so that Soufflé may process each on a
separate thread via OpenMP (line 1 in Figure 1). For each
partition, a loop iterates over all tuples in the current par-
tition of ancestor ∆ (line 2) and computes a selection
tuple, key, representing all tuples in parent that match
the present tuple from ancestor ∆ in its join-columns (in
this case, just the second column value, env0[1]). This se-
lection tuple is then used to produce an iterator selecting
only tuples in parent whose column-0 value matches the
particular tuple env0’s column-1 value. Soufflé thus iter-
ates over each (x,y) ∈ ancestor ∆ and creates an iterator
that selects all corresponding (y, z) ∈ parent . Soufflé iter-
ates over all matching tuples in parent (line 5), and then
constructs a tuple (x, z), produced by pairing the column-0
value of the tuple from ancestor ∆, env0[0], with the
column-1 value of the tuple from parent , env1[1], which
is inserted into ancestor new (line 8) only if it is not al-
ready in ancestor full (line 6). Given this architecture,

// Partition ancestor
∆

for a pool of OpenMP threads; iterate over parts

1 pfor(auto it = part.begin(); it<part.end();++it){

// Iterate over each tuple, env0, of ancestor
∆

(in each partition)

2 try{for(const auto& env0 : *it) {

// Construct an iterator selecting tuples in parent that match env0

3 const Tuple<RamDomain,2> key({{env0[1],0}});
4 auto range = rel_1_edge->equalRange_1(key,

READ_OP_CONTEXT(rel_1_edge_op_ctxt));

// Iterate over matching tuples in parent

5 for(const auto& env1 : range) {

// Has this output tuple already been discovered (is in ancestor
full

)

6 if(!(rel_2_path->contains(Tuple<RamDomain,2>({{env0[0],env1[1]}}),
READ_OP_CONTEXT(rel_2_path_op_ctxt)))) {

// Construct the output tuple and insert it into T_new
7 Tuple<RamDomain,2> tuple({{static_cast<RamDomain>(env0[0]),

static_cast<RamDomain>(env1[1])}});
8 rel_4_new_path->insert(tuple,

READ_OP_CONTEXT(rel_4_new_path_op_ctxt));
9 }
10 }
11 }} catch(std::exception &e){SignalHandler::instance()->error(e.what());}
12 }

Figure 1. The join in TC, as implemented by Soufflé.

Soufflé achieves good performance by using thread-safe
data-structures, template specialized for common use cases,
that represent each relation extensionally—explicitly stor-
ing each tuple, organized to be amenable to fast iteration, se-
lection, and insertion. Soufflé includes a concurrent B-tree
implementation [18] and a concurrent prefix-tree imple-
mentation [19] as underlying representations for relations.
Soufflé does not support MPI or distributed computation of
Datalog programs.

2.4 Balanced Parallel RA
Implementation of Datalog as performant RA suggests a
strategy for extracting parallelism if these primitive opera-
tions themselves can be made highly data-parallel. Several

lines of work have approached the challenge of developing
schemes for decomposing large RA operations over many
parallel threads. The double-hashing approach, with local
hash-based joins and hash-based distribution of relations,
is broadly the most commonly used method to distribute
join operations over many nodes in a networked cluster
computer [12, 13, 38]. Recently, both radix-hash join and
merge-sort join have been evaluated [7] at up to 4k threads.
Another recent approach proposes algorithms for bal-

anced parallel relational algebra (BPRA) adapting the rep-
resentation of imbalanced relations, using a two-layered
distributed hash-table to partition tuples over a fixed set of
buckets, and, within each bucket, to a dynamic set of sub-
bucketswhich may vary across buckets [23].This represents
a vertical decomposition of the relation across processes
that is keyed both on a set of join columns, and also on all
other columns to ensure a balanced mapping of tuples to
processes. Each tuple is assigned to a bucket based on a hash
of its join-column values, but within each bucket, tuples are
hashed on all non-join-column values, assigning them to
a subbucket. Each bucket and subbucket pair unqiuely as-
signs those tuples to a particular MPI process. This scheme
permits buckets that have more tuples to be split across mul-
tiple processes uniformly and for the number of subbuckets
to increase with the tuples in that bucket. Balancing can be
done periodically in both the direction of splitting buckets
into more subbuckets, or of consolidating them, as needed.
To distribute subbuckets to managing processes, BPRA uses
a round-robin mapping scheme that requires a very small
amount of additional communication, but ensures that no
process manages more than one subbucket more than any
other. Locally, subbuckets store tuples using B-trees (an ap-
proach also used by Soufflé, although their data structures
have undergone particular engineering refinements). This
carries performance advantages over the double-hashing
approach’s use of hash tables. Crucially, hash-tables can
also lead to complications in a distributed setting where a
resizing operation may delay synchronization.
Figure 2 shows a schematic diagram of the BRPA join

algorithm in the context of an incrementalized TC compu-
tation. A join operation can only be performed for two co-
located relations: two relations each keyed on their respec-
tive join columns that share a bucket decomposition (but
not necessarily a subbucket decomposition for each bucket).
This ensures that the join operation may be performed sep-
arately on each bucket as all matching tuples will share a
logical bucket; it does not ensure that all pairs of matching
tuples will share the same subbucket as tuples are assigned
to subbuckets (within some bucket) based on the values of
non-join columns.
The first step in a join operation is an intra-bucket com-

munication phase within each bucket in which every sub-
bucket receives all tuples for the outer relation, across all
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Figure 2. Shows the major phases of a BPRA join in the context of a TC computation.

subbuckets (while the inner relation only needs tuples be-
longing to the local subbucket). After this, a local join op-
eration (corresponding to a Datalog rule, with possible pro-
jection and renaming) can be performed in every subbucket
in parallel. Output tuples from these local joins may each
belong to an arbitrary bucket in the output relation, so an
MPI all-to-all communication phase shuffles the output of
all joins to their managing processes (preparing them for
any subsequent rules or iterations). Upon receiving output
tuples from the previous join, each receiving process inserts
them into the local B-tree for each applicable Rnew. It then
propagates R∆ into Rfull and Rnew becomes R∆ for the next
iteration. If no new tuples have been discovered, globally, a
fixed-point has been reached and iteration may halt.

Intra-bucket communication (shown on the left of Fig-
ure 2) uses MPI point-to-point communication to shuffle tu-
ples from each subbucket of the outer relation to subbuck-
ets of the inner-relation, which is then able to perform lo-
cal, per-subbucket joins. It may seem appealing to fuse the
final all-to-all communication phase among buckets with
the intra-bucket communication of the subsequent iteration,
sending new tuples (for R∆ in the next iteration) directly
to all subbuckets of the inner relation; however, doing this
fusion forgoes an opportunity for per-subbucket deduplica-
tion and yields meaningful slowdowns in practice.

The local join phase proceeds in a parallel and unsyn-
chronized fashion. Each process iterates over its subbuck-
ets, performing a single join operation for each. Our join is
implemented as a straightforward tree-based join as shown
in the center of Figure 2. In this diagram, colors are used
to indicate the hash value of each tuple as determined by
its join-column value. Once received, the outer relation’s
tuples are iterated over, grouped by key values, where, for
each, a lookup is performed to select a portion of the inner

relation’s B-tree where all tuples have a matching key value
(in the case of TC computation, this is selecting the first
column of parent ). For two sets of tuples with match-
ing join-column values, we effectively perform a Cartesian
product computation, yielding one tuple for all possible
pairs of outer and inner tuple.
Each output tuple has projection and renaming per-

formed on-the-fly; in the case of TC, the prior join columns
that matched are projected away. These tuples are locally
deduplicated, organized, and staged for transmission to
new managing subbuckets in their receiving relation. After
evaluating a rule, each output tuple destined for a head-
relation R belongs to Rnew and must be hashed on its join
columns; in the case of TC, this is the rightmost column
of ancestor . Join columns are hashed to determine the
bucket and non-join columns to determine the subbucket;
together bucket and subbucket determine a managing pro-
cess via the current round-robin mapping (stored on every
process). An all-to-all communication phase (shown on the
right side of Figure 2) transmits materialized joins to their
new bucket-subbucket decomposition in head-relation Rnew.
The managing process for each bucket and subbucket in-
volved is obtained from a local round-robin map and tuples
are organized into buffers for MPI’s All_to_allv synchro-
nous communication operation. When this is invoked, all
tuples are shuffled to their destination processes.

Finally, after the one synchronous communication phase
per iteration, each R∆ is locally propagated into Rfull, which
stores all tuples discovered more than 1 iteration ago. New
tuples are checked against this Rfull to ensure they are gen-
uinely new facts, and are inserted into a B-tree for Rnew on
each receiving process to perform remote deduplication. At
this point, the iteration ends, Rnew becomes R∆ for the sub-
sequent iteration, and an empty Rnew is allocated. If no new
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tuples were actually discovered in the previous iteration, a
fixed-point has been reached and no further iterations are
needed as the database as stabilized with respect to all rules
of inference.

BPRA is notable for allowing two kinds of load-imbalance
to be remediated dynamically across fixed-point iterations.
Spatial load imbalance occurs when a relation’s stored tu-
ples are mapped unevenly to processes due to key-skew or
inherent imbalance in relation’s distribution of tuples. Tem-
poral load imbalance occurs when the number of output tu-
ples produced varies significantly across iterations.

BPRA includes three main algorithms for adjusting the
representation of a relation or RA operation to improve both
these kinds of balancing. Bucket refinement is a dynamic
check of each bucket to see if its subbuckets are significantly
heavier than average. When this is detected, it triggers a re-
finement in which new subbuckets are allocated to support
the larger number of tuples in this specific bucket. Bucket
consolidation is the reverse and occurs only if there are a
significant number of refined buckets. It consolidates buck-
ets into fewer subbuckets when spatial imbalance has again
lessened. Last, iteration roll-over allows particularly busy it-
erations to be interrupted part-way, with completed work
being processed immediately via an added communication
phase and with the residual workload from the iteration
“rolling over” to a new iteration. This improves robustness
in the face of temporal imbalance, preventing crashes at the
cost of an additional sychronization phase and poorer dedu-
plication behavior.

3 Parallel RA Machine
We develop the standard techniques for compiling Datalog-
like languages to RA, and for parallelizing RA over large
numbers of threads using BPRA, into a Parallel Relational
Algebra Machine (PRAM) and its intermediate representa-
tion (IR). Soufflé’s RAM is a model for deductive databases
in terms of shared-memory relational algebra on a single
machine. We introduce PRAM as a evolution of this con-
cept that suits the unique challenges and opportunities of
applying BPRA to logical inference tasks.

In the example of Soufflé’s compiled C++ in Section 2,
any k-ary join operation could be implemented as a series
of k nested for loops (with partitioning among threads, effi-
cient selecting iterators, etc). By contrast, BPRA imposes a
key restriction to facilitate data-parallelism: all joined rela-
tions must use indices that have precisely homogenous join
columns. This means a rule such as

H(x,y,z) :- B0(w,x,y), B1(y,z), B2(z).

must be evaluated using two sequential binary joins, since
B0 and B1 share a different column in common than do
B1 and B2 . While trinary or k-ary joins that are homoge-
nous in their join columns are conceivable via BPRA, they

are not common in our Datalog code. The fact that we must
use binary joins, and cannot reuse indices for their pre-
fixes [35], represent key restrictions that countervail Souf-
flé’s approach to optimizing Datalog for shared-memory
systems. However, with several key innovations, we man-
age and exploit the unique distributed setting of our parallel
RA operations and obtain an approach that can scale well.
We implement PRAM using BPRA. BPRA’s approach to

parallel RA is amenable to iterated RA operations over re-
lations with highly dynamic topologies, but it has several
challenging limitations we must overcome:
• Lacking of support for heterogenous k-ary joins,
• Inability to run operations in parallel—in BPRA, each
operation has its own synchronous all-to-all commu-
nication phase.
• Lack of support for tracking multiple indices of rela-
tions, adding new tuples to each index.

3.1 PRAM IR

ir ∈ PRAM = P(SCC) × P(SCC × SCC)
scc ∈ SCC = P(Rule)
rule ∈ Rule ::= (rule hclause bclause)

| (rule hclause bclause prim)

| (rule hclause bclause bclause)

| (arule hclause bclause)

hclause ∈ HClause ::= (hrel var . . .+)

hrel ∈ HRel ::= (rel-select name arity index)

bclause ∈ BClause ::= (brel var . . .+)

Brel ∈ BRel ::= (rel-version name arity index ver)

prim ∈ Prim ::= (op var . . .+)

name ∈ Name = ⟨symbols⟩
var ∈ Var = ⟨symbols⟩
op ∈ Op = ⟨primitive operations⟩

arity ∈ Arity = N
index ∈ Index = N∗

ver ∈ Version = {delta, full}

Figure 3. PRAM domains used to define our core IR.

Our definition of a compiled PRAM program or IR is
shown in Figure 3. A program is a directed acyclic graph
among compiled strongly connected components (SCCs),
of program rules, indicating which other SCCs must be
run before each SCC can be run. SCCs with no incoming
dependencies may be run immediately, and SCCs that con-
tain only a single non-recursive rule are non-recursive and
are not iterated to a fixed point because a single iteration
always guarantees output consistent with the rule. PRAM
supports four fundamental kinds of rules: a unary copy rule
that propagates one relation into another, with possible
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reordering and projection; i.e., H(y,x) :- B(x,y,z). ; a
copy with primitive operation that can filter or extend tu-
ples; i.e.,
H(x,y) :- B(x,y), x<y. ; a binary join rule that joins
two relations with possible reordering and projection; i.e.,
H(z,x) :- B0(x,y), B1(y,z). ; and finally, an adminis-
trative copy rule between a canonical index for a relation
and a non-canonical index for a relation.

Our system designates exactly one index for each relation
as canonical (this may be the only index for a relation), and
creates administrative rules that, acting like a unary copy
rule, propagate newly discovered tuples from a canonical
index to each of the non-canonical indices. The canonical
index is always used in the head of a rule and our compiler
generates appropriate indices and administrative copy rules.
Note that an hclause is the same as a bclause except that it
must be the canonical index and does not need a version tag,
as newly discovered tuples are always placed in Hnew. Body
clauses are specific to either the version delta or full, an
artifact of semi-naïve evaluation.

3.2 Implementation
Our implementation of a Datalog compiler and run-time is
written in Racket and C++, composed of several passes:

Parsing and lexing. We support typical Datalog nota-
tion that overlaps with a substantial fragment of syntactic
niceties supported by Soufflé. We track source locations ex-
plictly so we can report errors and we’ve included support
for a few dozen common built-in operators to be attached
to rules, such as the comparison x < y .

Organization. A first pass performs simplification and
canonicalization steps. For example, we allow suggestions
to be given for how to order rules as an extension, these are
broken apart into a sequence of rules in this pass. Rules with
multiple head clauses can also be split effectively into multi-
ple rules with a single head-clause each. Wildcard variables,
as in the clause r(_,x) are renamed to a unique anony-
mous variable; e.g., r(_3,x) .

Static unification. A second pass performs transitive
static unification of variables that are explicitly unified by
a built-in comparison, as in p(x,x),q(y),x=y , so equal
variables across relations use the same variable name and
within the same relation use a built-in to filter that relation;
this example is converted to p(x,_0),q(x),x=_0 .

Partitioning. The next pass partitions complex rules
into a set of simple rules that form a linear chain of depen-
dence on one another. For example, the rule

a(x,y,z) :- b(w,x), c(x,y), d(y,z).

is compiled into a sequence of two binary rules, inserting
an internal relation representing the half-evaluated rule:

a(x,y,z) :- b(w,x), int(x,y,z).

int(x,y,z) :- c(x,y), d(y,z).

As balanced parallel relational joins must be performed
on two relations with an identical selection index (to guar-
antee a compatible parallel decomposition of the two rela-
tions), the only rules permitted after this pass are unary
copy rules that may reorder or project columns, unary built-
in rules that may also perform a generative or filtering built-
in operation (such as x < y ), or a binary rule that joins two
relations, projects some columns, and reorders columns for
the head relation.

Complex rules that join four or more relations at once,
are likewise partitioned into a linear chain of joins, each
performed after the last. We also experimented with creat-
ing balanced binary trees of joins, and with various heuris-
tics for partitioning some complex rules roughly in half, be-
fore recuring to partition each partition of body clauses. In
nearly every case, we observed between 5× and 25× the
overall tuple-load in these experiments (vs strictly linear
chains of rules), representing a very substantial blow-up in
intermediate relations. Intuitively, this is because in a lin-
ear chain it takes a greater number of iterations to com-
pute the rule, more join operations between starting the rule
and adding facts to the head relation, however the tuples in-
volved are always maximally grounded and filtered by all
relations taking into account so far. Using balanced binary
trees of joins optimizes for lower latency, but leads to con-
straints apparent in the original rule being taken into ac-
count only after a much larger number of intermediate facts
are materialized, at significant expense.

As the goal of our system is to exploit the massive data-
parallelism of balanced parallel RA operations, we favor
pipelining a longer sequence of RA operations in a linear
chain, with the exception of cases where two subsets of
body clauses have completely disjoint sets of variables, as
in the example

h(x,y) :- f(a,x), g(x,b), p(c,y), q(y,d).

For this input, our compiler will produce two indepen-
dent binary rules, for f and g and for p and q, followed
by a single binary rule to compute the Cartesian product
int0(x),int1(y) :

h(x,y) :- int0(x),int1(y).

int0(x) :- f(a,x), g(x,b).

int1(y) :- p(c,y), q(y,d).

As the Cartesian product is the actual semantics of our orig-
inal rule, it does not represent a spurious blow-up. Note that
the compiler will detect that variables such as a or b are not
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required for the head, and so can be pruned from intemedi-
ate relations as well.

Selection splitting. This pass looks at the binary rules
generated in the previous pass and determines the needed
set of indices for each relation. This is a set of ordered sub-
sets of their columns that may be used as a key for efficient
access in a parallel join operation. If a relation is used in the
body of a binary rule, it must have an index for the exact
subset of columns it has in common with the other relation
used in the binary rule, because we require such compatible
matching indices for our parallel join algorithm.

This pass also decides which index is canonical, and mod-
ifies rules so that the head of every rule is the canonical in-
dex for that relation. Administrative rules are then added to
propagate discovered tuples to all indices once discovered in
the canonical index.These admin rules are essentially unary
rules that copy tuples with possible column reordering.This
makes it natural to compact the communication needed to
maintain a set of indices for a relation with the normal com-
munication used during a parallel join, in pipelined fashion.
This is to say, the iteration after a tuple is discovered, it is
copied to all its indices during the single communication
phase shared by all rules.

Stratification. uses a modified Tarjan’s algorithm [36]
to compute a directed graph of strongly connected compo-
nents (SCCs) in the dependency structure of rules. For exam-
ple, rules that can be run upon initialization only once will
appear as rules whose body relations are already available
and never modified.

Incrementalization. prepares the program for semi-
naïve evaluation by explicitly splitting each relation into
three versions, a new, delta, and full version as described
previously. The body clauses of rules are modified so that
static relations (those that do not change when this rule is
evaluated) draw tuples from the full version, while dynamic
relations must use the delta version. When two dynamic
relations are joined, these are split into three rules that join
full with delta, delta with full, and delta with delta. For
complex k-ary join rules, these combinatoins blow up expo-
nentially, so it ends up being convenient we are stuck with
having already partitioned these down to chains of binary
rules.

C++ emission. Finally, the incrementalized rules are
written out as a driver in C++ corresponding to PRAM IR
code in the previous section. That is to say, our backend’s
API interfaces to the IR the AST described in the last sec-
tion. There is an object for encoding an administrative rule
between two relations with a particular renaming and pro-
jection and another for encoding a join rule or a rule that
operates on a relation using a built-in primitive to filter or
extend the relation as tuples are emitted.

Run-time system. Our backend then finally interprets
this PRAM IR, evaluating it efficiently in terms of our exten-
sion to the original BPRA source [24]. We have modified the
library for BPRA into a more general run-time for PRAM IR.
The original library was not developed to allow multiple RA
rules to be evaluated in parallel, leading to some engineer-
ing challenges in terms of meta-data transfer and keeping
track of all relations. We add a logical inference engine ob-
ject which can be populated with any number of relations
and can act generically as a primitive RDBMS and can accept
a PRAM IR and set of input relations to evaluate a program
and extract the final IDB.

Instead of running each RA operation in an SCC, one at a
time, we modify evaluation to interleave all RA operations
in a collective single operation with one shared communin-
cation phase. Communication is non-uniform, where every
process sends different amounts of data to every other pro-
cess. This is typically implemented using MPI_alltoallv,
but, in order to facilitate this non-uniform communication
we first have to share the offsets and sizes of all relations
and processes, so that every process has a consistent, global
view. This meta-data exchange is implemented by
MPI_alltoall. After this metadata exchange, we populate
send buffers and receive buffers on every process before in-
voking MPI_alltoallv.

Unlike plain BPRA, every process performs a large batch
of local joins (or copies, reorderings, projections, etc) for
all given rules in the current SCC. This means that before
a single comunication phase, each process will have gen-
erated output for potentially a large number of PRAM IR
rules. We have introduced an crucial optimization in the
form of comm-compaction where we concatenate all-to-all
send buffers across all rules into one large buffer that can
be transmitted in a single communication epoch. This step
significantly cuts down communication costs, especially for
compute intensive problem such askCFA (see section 4) that
have several rules in a single SCC and at each step of a collec-
tive fixed-point iteration for that SCC. This crucial improve-
ment to RA that would otherwise be individually parallel,
but not across multiple operations, requires ordering infor-
mation to be broadcast during the epoch’s fixed meta-data
transfer, but appears to grant improved scalability versus
Soufflé.

4 Case Studies
Graph-pattern mining (GPM) includes a rich source of
core problems that highlight the expressivity of deduc-
tive databases. As a simple example we consider transitive
closure (TC). We can implement TC using the following
Datalog program, which iteratively computes the path rela-
tion:

path(x,y) :- edge(x,y).
path(x,z) :- path(x,y), edge(y,z).
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To compile this Datalog program to PRAM IR, we gener-
ate two initial administrative rules to set up path and pre-
pare for the bulk of the work to be done in a subsequent
SCC:

; Admin rule to load index for edge on column-1:
(arule
((rel-select edge 2 (1)) ident a1)
((rel-version edge 2 (1 2) delta) a1 ident))
; The first Datalog rule as a binary join rule:
(rule
((rel-select path 2 (1 2)) x y)
((rel-version edge 2 (1 2) total) x y))
; The next two rules are in an SCC together,
; stratified to run after the previous rules.
; A rule to join path and edge:
(rule
((rel-select path 2 (1 2)) x z)
((rel-version path 2 (2) delta) y x)
((rel-version edge 2 (1) total) y z))
; Admin rule to propagate discovered paths to
; the index for path on column-2:
(arule
((rel-select path 2 (2)) a1 a0)
((rel-version path 2 (1 2) delta) a0 a1))

The third rule implements the iterative extension of path to
compute TC. Observe that tuples are pulled from the delta
version, implementing semi-naïve evaluation.

4.1 Program Analysis
Static program analysis is a key, impactful application of
Datalog-like solvers that attempts to develop an accurate
bounded model of program behavior based only on the pro-
gram’s source text. Program analyses are constructed using
a variety of different theories and approaches; what these
approaches share in common is the goal of obtaining suffi-
cient precision for specific program properties while guar-
anteeing analysis termination, and ideally, efficiency. This
central challenge of static analysis is made explicit in the
methodology of abstract interpretation [14]. An abstract in-
terpretation of a program evaluates its input source code in
terms of imprecise or abstract values and machine compo-
nents, permitting a careful loss of precision in exchange for
reasonable bounds on analyis complexity.

A wide variety of abstract interpretations can be system-
atically engineered as Datalog programs, as has been exten-
sively explored in the literature [17, 20, 21, 28, 42]. In partic-
ular the DOOP framework [9] for points-to analysis of Java,
originally developed for LogicBlox, has been ported and op-
timized for Soufflé.

A class of these algorithms known as flow-analyses
model the propagation of data-flow information or control-
flow information through a target program [25]. Data-flow
analysis (DFA) requires control-flow analysis (CFA) to ob-
tain any reasonable precision for functional languages, for
multi-paradigm languages like Java that support closures

and methods associated with objects, or for structured lan-
guages with function pointers, as in C/C++: data-flow prop-
erties and control-flow properties are naturally entangled
and must be simulated together to obtain a model with any
reasonable precision [31, 32]. CFAs form an important foun-
dation for analysis of most programming languages, in par-
ticular highly dynamic languages, and are often extended
with additional client analyses for tracking relations among
variables [5] or for verifying sophisticated contracts using
abstract symbolic execution [27]. Systematic approaches to
abstract interpretation of abstract-machine-based seman-
tics [40] allow analyses to be developed from a variety of
standard (concrete) abstract machines that precisely specify
a language’s semantics [26].
This systematic development of an abstract abstract ma-

chine from a concrete abstract machine yields is highly
configurable and tunable, so it corresponds to a broad de-
sign space of analyses that strike subtly different trade
offs between precision of result and complexity of analy-
sis [16]. One classic instantiation of this framework yields
k-call-sensitive control flow analysis (kCFA), a well-ordered
hierarchy of CFAs with increasing precision and complex-
ity as parameter k is increased. (Although complexity can
both increase and decrease non-obviously as such tuning
parameters are increased.) Our implementation of kCFA for
the plain lambda calculus is about 40 lines in Datalog and
can be easily tuned to any k to increase its degree of con-
text sensitivity. We also wrote a worst-case input generator
based on the worst-case input for kCFA discussed in [39].
This allows us to scale up either the term size, we call (t )
or the context-sensitivity (k). We use this to generate suf-
ficiently large experimental workloads, but we do not use
either of these parameters to attempt weak-scaling experi-
ments as they do not scale up the problem size in a simple
way. Below is a fragment of our analysis showing how free
variables are computed:
// Every variable is free at a reference to it
free(x, e) :- var-ref(e, x)
// At unary application a free variable for either
// subexpression is free at the call-site.
free(x, e) :-
app(e, e0, e1),
free(x, e0) or free(x, e1).

// At a lambda abstraction, variables free in the
// body that are not the formal parameter, are free.
free(x, e) :-
lambda(e, y, body),
free(x, body),
x != y.

Free variable computation propagates information up the
AST recusively, and forms an SCC in the compiled PRAM IR
that is stratified before the primary CFA logic runs.

5 Evaluation
5.1 Dataset and HPC Platforms
We perform experiments on the Theta Supercompter at the
Argonne National Lab and on a machine rented via Amazon
Web Services (AWS). For AWS, each of our experiments was
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run on an instance of typem5d.24xlarge consisting of 96 vir-
tual CPUs (Intel Xeon Platinum 8000) and 384 GiB of RAM
and NVMe-based SSD storage. Of these 96 virtual CPUs, we
ran experiments utilizing up to either 60 processes (for MPI-
based imlementation) or threads. Theta supercomputer is a
Cray machine with a peak performance of 11.69 petaflops,
281,088 compute cores, 843.264 TiB of DDR4 RAM, 70.272
TiB of MCDRAM and 10 PiB of online disk storage. Theta
uses the Dragonfly network topology and is backed by a
Lustre filesystem. Theta’s node is a Intel KNL 7230 which
comprises of 64 physical cores.

5.2 Strong Scaling on AWS
To compare the single-node performance of our PRAM-
based implementation versus Soufflé, we ran each case
study using representative input data. For TC, and espe-
cially for CFA, we choose to focus on strong scaling both
because it is more indicative of scaling performance and
because it is difficult to accurately scale up the problem size
for weak scaling. For k-CFA, the k parameter does not scale
problem size up in a predictable way. We performed TC
using a directed graph of the Arxiv High-Energy Physics
paper citation network (consisting of 34,546 nodes and
412,578 edges) compiled by Gehrke et al. [15]. Second, we
performed kCFA using a scaled-down version of the ex-
periments. We use experiments labled t-k with a specific
number of terms (t ) and degree of sensitivity (k), as de-
scribed in section 3.2. For our experiments here, we set
term size (n) to be 100, and precision (t ) to be 6.
We compiled each of our experiments using the compiler

described in Section 3. We modified our compiler to gener-
ate a Soufflé program consisting of only binary joins and
benchmark the results. We then used Soufflé’s compiling
mode to produce an optimized binary and we minimizeI/O
overhead by dumping the smallest output relation. We per-
formed each experiment three times, reporting the average
of each of the runs, though runtime was roughly consistent
across runs. For each of our experiments, we validated the
correctness of results of Soufflé against our MPI-based im-
plementation by checking both implementations produce
the same set of tuples.

The results of our experiments are shown in Figure 4.
We plot time (in seconds) along the y axis against process /
thread count along the x axis. PRAM achieves better perfor-
mance than Soufflé for kCFA in our benchmarks.We believe
this is because Soufflé parallelizes individual joins, but does
not interleave joins to perform them in parallel (further dis-
cussion is included in Section 3.2). Because kCFA contains
more rules than our other benchmarks, the difference be-
tween sequential and parallel joins becomes more apparent.
This demonstrates one advantage to our approach even at
smaller scales.

For transitive closure computation our experiments
showed modestly-decreasing runtime for Soufflé, however,
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Figure 4. Performance results for our case studies

we observed poor scaling characteristic when compared to
PRAM. At a high level, our results demonstrate that our
system scales better than Soufflé as degree of parallelism
increases but achieves worse constant factors. One key dif-
ference between PRAM and Soufflé is tuple representation.
While Soufflé employs highly-optimized shared memory
datastructures (discussed briefly in Section 2). PRAM uses
messsage passing and an off-the-shelf B-tree implemen-
tation to communicate and represent tuples. Because of
this, when lots of tuples are generated during an iteration
PRAM will allocate large amounts of memory to exchange
messages and represent tuples. We see underlying tuple
representation as an important but orthogonal issue to our
underlying scaling approach, and plan to investigate using
Soufflé’s datastructures in future work.

5.3 Strong Scaling on Theta
We ran two single node experiments run at 32 and 64 cores
(nodes on Theta support 64 threads per node). We were un-
able to run experiments at smaller scale due to memory con-
straints. We ran a k-CFA worst-case instance with 80 terms
and k = 7, which took 2648 iterations to complete, turn-
ing 724 EDB facts into 165,389,799 IDB facts. We observe a
speed-up of 1.76× and scaling efficiency of 88% while go-
ing from 32 to 64 processes. We have also run some prelimi-
nary multi-node experiments withTheta and have observed
82% and 100% scaling efficiency on two k-CFA benchmarks
at 512 threads. Overall our experiments are indicative of
healthy scaling.
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6 Related Work
Relational Algebra. Our work directly builds upon

BPRA, parallel relational algebra primitives designed to
scale on supercomputers [23, 24]. This implementation
leverages the observation that joins can be distributed to a
cluster via a double-hashing approach, consisting of local
hash-based joins and hash-based distribution of relations.
Their double-hashing approach is inspired by the earlier
work of Cheiney et al. [13] and Cacace et al. [12], who
describe data-parallel strategies for path computation.

Barthels et al. describe a system for distributing the radix
hash join and merge-sort join algorithms [7]. Their imple-
mentation scales to 4,096 cores via MPI and reaches ex-
tremely high tuple throughput at peak load. Work by Kim
et al. and Balkesen et al. demonstrates how these joins may
be further accelerated via AVX/SIMD instructions [6, 22].
While this work successfully scales a single join iteration, it
does not reorganize or balance tuples to allow subsequent
joins, and thus does not readily enable the fixed-point com-
putation necessary for deductive databases.

In BPRA, tuples are distributed via a two-layered dis-
tributed hash-table which multiplexes tuples onto a stat-
ically fixed set of buckets and dynamically-tunable set of
subbuckets [23]. Each tuple is assigned a bucket based on
the hash of its join columns; this then enables local hash-
based joins. Next, all-to-all communication is performed
to communicate the result of each join to its appropriate
bucket and subbucket. In subsequent work they develop
strategies to enable spatial and temporal load balancing of
tuples across the cluster, and use these techniques to per-
form the largest-ever computation of transitive closure [24].

Program Analysis and Datalog. Deductive databases
offer an attractive option for the implementation of large-
scale program analyses as they enable declarative analysis
specification alongside efficient solving via modern Datalog
engines. the DOOP framework by Smaragdakis et al. poi-
neered an elaborate context-sensitive points-to analysis for
Java implemented in Datalog [10, 34]. DOOP originally used
the LogicBlox Datalog engine to achieve an order of mag-
nitude speedup compared to a predecessor hand-written
points-to analysis for Java [4]. DOOP was later ported to
the Soufflé Datalog engine, which enabled further scalabil-
ity via Soufflé’s single-node task-level parallelism [3].While
Soufflé represents the state-of-the-art analysis platform, it
is fundamentally limited in that it cannot provide data par-
allelism, hindering it from operating beyond a single node.
By contrast, our parallel relational-algebra approach can
likely be scaled to clusters.

There is also some recent work on program analysis and
graph processing via Apache Spark. Our approach leverages
a set of specific underlying techniques (BPRA) that are de-
veloped from the ground up, atop MPI directly, to balance

communication and computation in a manner Spark’s com-
munication paradigm does not allow. Spark is not appro-
priate for leadership class supercomputers such as Theta,
which permit granular and tunable communication that we
can exploit directly viaMPI, leading to a noted gap in perfor-
mance [37]. Spark is based on Java and optimized to leverage
commodity-class nodes coordinating via standard network
hardware (vs. InfiniBand on Theta). For example, work on
BigDatalog [? ] gives benchmarks for transitive closure that
our system has exceeded in scale by more than a factor of
1000. As discussed in [24] section 3, BPRA specifically ad-
dresses communication issues that arise at this scale.
There are several other notable efforts in distributed

and parallel program analysis that achieve scalability via
application-specific task-level parallelism. For example,
Aiken et al.’s Saturn program analysis system includes a
distributed mode via MPI, which they anecdotally report
achieves scalability [2]. Their system distributes the anal-
ysis via a worklist of function summaries and distributing
work among the cluster. This approach assumes that the
analysis is summarization-based and does not offer data
parallelism. Similarly, there have been multiple efforts to
distribute symbolic execution [11, 29, 33]. The recent For-
mulog system harmoniously integrates Datalog, functional
programming, and constraint solving, and may provide
useful inspiration for future work [8]. In contrast to these
systems, our approach offers true data parallelism, enabling
the entire cluster to make progress on the analysis at once
rather than requiring application-specific task deliniation.

7 Conclusion
Exciting advances in high-performance Datalog solvers
have enabled new frontiers in large-scale static analysis.
However, current-generation Datalog solvers are funda-
mentally limited in parallelism. We’ve presented a method-
ology building upon emerging work in data-parallel rela-
tional algebra that allowed us to build the first MPI-based
Datalog solver. Our solver is built on a novel parallel rela-
tional algebra machine, which makes several key decisions
to enable implementing Datalog rules via data-parallel rela-
tional algebra. We see this as a foundational step forward in
the implementation of high-performance logical-inference
engines. Our benchmarks demonstrate that our approach
achieves better single-node scalability than Soufflé, the
state-of-the-art Datalog engine. Additionally, we observed
promising initial scalability of up to 512 threads on the
Theta supercomputer. In future work, we hope to build next-
generations platforms for graph mining, program analysis,
and other large-scale logical inference problems.
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