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ABSTRACT
The increasing gap between available compute power and
I/O capabilities is resulting in simulation pipelines running
on leadership computing facilities being reformulated. In
particular, in-situ processing is complementing conventional
post-process analysis; however, it can be performed by us-
ing the same compute resources as the simulation or using
secondary dedicated resources.

In this paper, we focus on three different in-situ analy-
sis strategies, which use the same compute resources as the
ongoing simulation but different data movement strategies.
We evaluate the costs incurred by these strategies in terms of
run time, scalability and power/energy consumption. Fur-
thermore, we extrapolate power behavior to peta-scale and
investigate different design choices through projections. Ex-
perimental evaluation at full machine scale on Titan sup-
ports that using fewer cores per node for in-situ analysis is
the optimum choice in future high-end systems. Hence, fur-
ther research effort should be devoted towards developing
in-situ analysis techniques following this strategy.

Keywords
In-situ analysis, performance/energy/power trade-offs, data
movement, topological analysis, merge trees.

1. INTRODUCTION
Large scale scientific simulations using high performance

computing resources are instrumental in understanding com-
plex scientific phenomenon. Over the years, the available
compute power for performing these simulations has been in-
creasing enabling simulations of higher spatial and temporal
resolutions thereby generating enormous amounts of data.
Unfortunately, the I/O capabilities are not increasing at a
similar rate becoming a bottleneck in current simulations.
As a result, storing data at an effective temporal frequency
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for post process analysis is becoming increasingly infeasible.
To overcome these challenges, in-situ analysis is becoming
a favorable solution, where the analysis is performed con-
currently with the simulation and only the analysis results
are stored to disk. Since the analysis results are typically
orders of magnitude smaller than the entire data, the I/O
overhead is significantly reduced, allowing the analysis to be
performed at a much higher temporal frequency. With the
advent of exascale systems, these techniques are expected to
be an integral part of the simulation pipeline [9].

Recent work has addressed in-situ analysis in various ways.
Most of the efforts have been targeted towards visualization
techniques [3,24,29,30] but other types of analysis have been
also carried out in-situ [6,12,19,20]. These techniques follow
a co-processing model where the analysis is performed using
all the compute resources allocated to the simulation. Sev-
eral frameworks [1, 2, 10, 25, 31] have been developed, where
the data is transferred to a subset of the compute resources
or to dedicated secondary compute resources over the net-
work for analysis purposes before being stored to disk. The
combination of the above two approaches has also been al-
ready explored [4].

As several approaches for performing in-situ analysis are
available, it is important to make a careful evaluation of
these approaches. In this work, we focus on three strate-
gies in which the analysis can be performed on the same
compute resources with the simulation. First, we use all of
the compute resources of the simulation for the in-situ anal-
ysis [6, 12, 20]. As the data is already present in memory
there is no data movement involved in this approach. The
second strategy is to use a fewer number of cores from every
node for performing in-situ analysis. The data from all the
cores of the nodes could be moved to these cores by a shared
memory or on-node data transfer. Lastly, a fewer subset of
nodes from the entire machine could be used for analysis by
moving the data over the network from the rest of the nodes
i.e., off-node data transfer [5, 32].

Given the above strategies, making an optimum choice is
non-trivial as each strategy has different behaviors in terms
of performance and scalability. Furthermore, the choice of
the strategy has a direct impact on the energy and power
consumption as each strategy has different compute and
data transfer characteristics. As we move towards exascale
and tighter power budgets, it is crucial to understand and
take into account the power behavior of these strategies and
the trade-offs with performance and scalability.

In this paper, we evaluate the costs incurred by the three



different in-situ analysis strategies mentioned above in terms
of execution time, scalability and power consumption. We
make use of the parallel merge-tree computation [20] as a
representative case for a general class of global feature detec-
tion approaches such as identifying connected components,
vortex detection, clustering, etc. This computation has the
typical characteristic of a global reduction common in most
analysis algorithms that try to identify global features and
hence becomes a suitable choice for this evaluation. We
present the scalability and execution time behavior of this
computation by performing in-situ analysis on Titan, a lead-
ership class supercomputer at Oak Ridge National Labora-
tory, at full machine scale under the following scenarios:

• Using all the compute cores of the simulation.

• Using a fewer number of cores per node and on-node
data movement.

• Using a subset of the nodes and off-node data move-
ment.

As opposed to existing work that addresses energy effi-
ciency and co-design issues at extreme scale by comparing
different architectural alternatives [11,18], we explore power-
related issues of in-situ analytics at peta-scale (i.e., on Ti-
tan) in the above mentioned scenarios by conducting equiv-
alent empirical experiments on CAPER, an instrumented
platform for energy efficiency research. Fine-grained power
measurements allow us to capture the behavior of in-situ an-
alytics and extrapolate its power requirements at peta-scale
and explore the design space by making projections.

Our evaluation and findings provide a baseline for making
optimum choices for the in-situ analysis strategies in terms
of performance, scalability and power efficiency.

2. METHODS AND STRATEGIES
To perform the evaluation of the various in-situ scenarios

we make use of the following methodology. First, we need to
select an in-situ analysis technique that can serve as a good
representative for a broader class of techniques. As feature
detection is crucial in gaining scientific insights, we focus on
one of the in-situ feature detection techniques. The following
provides a description of each of the in-situ strategies along
with on overview of how it can be evaluated.

2.1 Feature Detection Algorithms
In order to gain insight from scientific simulations, scien-

tists are particularly interested in features of interest. These
could be burning cells in turbulent combustions [7, 21], ed-
dies in the ocean [28], halos in cosmology [27], etc. Con-
ventionally, feature extraction has been carried out in post-
process by analyzing the simulation dumps, but as we move
towards exascale, feature detection is moving to in-situ to
overcome the I/O bottlenecks as well as to capture features
at a high temporal frequency. In this regard, many of the
feature detection algorithms have been parallelized [14, 15,
22,26] and some of them have also been deployed in-situ [20].
All these techniques exhibit a common pattern in terms of
design. Typically, a set of local computations is performed
on the distributed data set followed by an exchange of data
along the boundaries of a block decomposition. Another set
of computations then takes into account this neighborhood
information. Multiple iterations of these steps are performed

until a solution is obtained. Conceptually, this results in a
reduction-like pattern, which can also be a limiting factor
in scaling such analysis, as the later stages of the reduction
typically causes load imbalance problems.

In this paper, we make use of the distributed merge tree
computation [20, 22] as a representative for the feature de-
tection algorithms. The merge tree encodes the evolution
of connected components of the super-level sets of a given
scalar function defined on the given domain, where the super-
level set is the region of the domain above a certain function
value. The geometric descriptions of the super-level sets are
often needed for analysis, for example, to track features, to
determine their volumes and shapes, and for visualization,
which have been found to be useful in a number of scien-
tific applications [21, 28]. An in-situ implementation of the
computation of merge trees on tens of thousand of cores
was provided in [20]. Due to its diverse applications, large
scale in-situ capability, and characteristic reduction-based
framework of the merge tree computation makes it a suit-
able choice for our evaluation. In this work, we make use of
an updated version of the implementation presented in [20].
The next section gives a brief overview of this algorithm
in terms of both the computation and the communication
pattern involved in the computation.

2.1.1 In-situ Merge Tree Computation
The distributed merge tree computation involves three

stages. The first stage involves computing the merge trees
for the individual blocks of data that are distributed across
the compute cores by the on-going simulation. We refer
to these individual trees as local trees. The second stage
then joins subsets of these individual local trees to form the
merge trees of the joined blocks. This resultant tree is then
given to the participating local trees in the third stage, so
that they can correct themselves based on the new informa-
tion received after joining with the neighboring blocks. The
second and third stages are successively performed, every
time adding information of the increasing boundary, until
the entire domain is covered. This resembles a global merge
pattern as shown in Figure 1. The join can be performed
with a k-way fan-in that gives rise to an interesting com-
munication pattern where data is not only sent down the
join hierarchy but also upwards to the leaves of the hierar-
chy after every join to the correction phase. The algorithm
is implemented using C++ and MPI. We refer the reader
to [20] for a detailed description of this algorithm.
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Figure 1: Dataflow diagram for the binary reduction type
merge tree computation. The arrows depict the communi-
cation involved.



In this work, we use an updated implementation of the
same algorithm but with a few changes. The earlier imple-
mentation computed the merge tree for data points lying
within a given function range (thresholds) of the domain.
Instead, in this work we perform the computation of the
merge tree for the full range of function values and all data
points in the domain. Although, since thresholds are data
dependent, we decided to not use them in this context as
we are using this algorithm as a proxy for a broader class of
algorithms. Also, computing the tree for the entire domain
is more computationally involved and hence is a good can-
didate for evaluating the scalability in the various scenarios.

2.1.2 Data Sets
We demonstrate our results using two datasets generated

by S3D [8], a large-scale direct numerical simulation code
that models turbulent combustions. The HCCI data set is
a 560× 560× 560 simulation of a homogeneous charge com-
pression ignition process in which a lean, premixed fuel-air
mixture is compressed until it ignites spontaneously in many
separate locations. The HCCI data was generated on Titan
at the Oak Ridge Leadership Computing Facility (OLCF).
To conduct a scaling study and simulate the exascale work
flow, we constructed a larger version by repeating the peri-
odic HCCI data eight times to form a 1120 × 1120 × 1120
volume. The second dataset is the Lifted Flame dataset
which is a 1600×400×2025 volume used to investigate tur-
bulent lifted flames with the goal of better understanding
direct injection stratified spark ignition engines for commer-
cial boilers, as well as fundamental combustion phenomena.
The Lifted Flame data was also generated on Titan. We
doubled the size of this data set along its periodic boundary
to create a volume of 1600×800×2025 for the scaling study.

These two datasets are different in terms of the feature
distribution and hence make a good choice for this study to
understand the behavior of the analysis under different types
of workloads. The HCCI dataset has features distributed in
the entire volume, whereas the Lifted Flame has two jets of
a flame entering the domain from one side and spanning the
center of the domain. All the features are concentrated in
the central part of the domain.

2.2 In-situ Strategies
As mentioned in Section 1, various strategies can be adopted

for in-situ analysis. Here, we elaborate on those strategies
and how they were evaluated.

2.2.1 No Data Movement
In this strategy, the in-situ analysis is performed by all the

compute cores of the simulation. As the simulation already
has the data in memory, this strategy does not involve any
data movement. Since there is no a priori data movement
cost, ideally, this strategy should give best performance, but
in practice, there are several factors that make this strat-
egy difficult to implement. Firstly, the analysis algorithms
have to work within constraints of the simulation in terms of
its domain decomposition, core counts, node mappings, etc.
These may not always be suitable to the analysis algorithms,
thus hindering its performance and scalability. For example
at very high core counts, the analysis may not strong scale
losing scaling efficiency and sometimes even taking longer
than smaller core counts. For our evaluation, we make use
of DIY [23] to decompose the datasets and distribute them

to the MPI processes. This acts as a scenario where the
simulation data is already in memory. The merge tree com-
putation is then performed on this data decomposition using
all the MPI processes. Since DIY is used only for loading
the data into memory, we do not measure its performance
or power consumption.

2.2.2 On-Node Data Movement
To mitigate the drawbacks of the above strategy, data

movement strategies within the node are employed. In this
strategy, we explore the option of using only few cores from
each compute node for the analysis. This requires moving
or aggregating the data from all the cores of the node to a
fewer cores on the node, which would participate in the anal-
ysis. In [17], it is shown that on-node data transfer between
MPI ranks can be done efficiently using shared memory in
a fast manner. So in our scalability experiments on Titan,
we consider the data movement to have negligible execution
time. Instead of performing the on-node data movement, we
decompose the data into parallelepipeds using DIY [23], in a
fashion that already represents the aggregated data within
the node. We then allocate only 1,2,4 or 8 MPI processes
per node on Titan while doing the scaling studies. For the
power analysis, the data movement cost cannot be ignored.
So, a prototype data movement scheme was implemented on
CAPER to get accurate power behavior.

2.2.3 Off-Node Data Movement
In this strategy, the data is moved to a subset of nodes in

the system. All the cores from these nodes are then used to
perform the analysis. The drawback of this approach is that
it requires the data to be moved from all of the compute
nodes to the selected set of nodes over the system intercon-
nect. This adds a significant overhead both in terms of time
as well as energy spent in moving the data. Although, there
are disadvantages, this technique works well when integrated
with the I/O frameworks [25] and if the data movement is
done in an asynchronous fashion [1, 2, 5, 10, 31, 32]. How-
ever, this inhibits the analysis frequency as data is moved to
the staging area less frequently due to the significant data
movement costs. Also, even though successful deployments
of such strategies have been done, they do not take into ac-
count the power impact of this strategy. In our evaluation,
we make use of our prototype data movement implemen-
tation on CAPER, to move the data to a subset of nodes
for the power study. For the large scale runs on Titan,
we expect the analysis to perform in the same fashion as
the strategy discussed in Section 2.2.1 with an extra cost in
terms of data movement. We assume that such a transfer
can be performed with any of the existing infrastructures
in an asynchronous fashion. Upon completion of the data
transfer, the situation is same as in Section 2.2.1 of running
the analysis using all the cores on the node, but only this
time on a smaller number of nodes. As a result, there is no
need to perform separate set of experiments to understand
the scaling and performance of this strategy as it would be
the same as in the case of Section 2.2.1.

3. EXPERIMENTAL EVALUATION

3.1 Performance and Scalability Analysis

3.1.1 Hardware Setup
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Figure 2: Time taken by the analysis on Titan for (a) the HCCI data set on various node counts by utilizing 1, 2, 3, 4, 8 or
16 cores per node. (b) A zoomed in view with only the higher range of node counts. We see that using fewer cores per node
gives better performance.

For our evaluation, we performed the scalability and per-
formance experiments on Titan by strong scaling both the
HCCI and Lifted Flame datasets. Titan is a peta-flop Cray
XK7 system with 18,688 nodes each with a 16-core AMD
Opteron 2.2 GHz processor for a total of 299,008 compute
cores.

HCCI dataset. Figure 2 shows the execution time and
scaling behavior for this dataset using varying number of
cores per node. At the lower node counts the per process
block decomposition size is large and the computation is
dominated by the compute intensive, yet data parallel, local
computation phase. As a result, having more cores involved
in the analysis at overall lower core counts gives best perfor-
mance. In fact, at the lowest node count using all the cores
is almost 15× faster than using only a single core. We see
that more number of cores per node gives the best perfor-
mance up to 4,000 nodes at which point the local block size
has become 14 × 28 × 56, while using all the cores on the
node. As the work load per process has reduced, the scaling
efficiency of using all the cores in the node decreases signifi-
cantly after this point and the execution time is dominated
by the communication costs. In fact, the execution time for
using all the cores increases from 1.07s at 4,000 nodes to
1.42s at 16,000 nodes. By doing on-node data aggregation
and using fewer cores, we increase the work per process and
hence achieve better performance. In Figure 2b, we see that
after 4,000 nodes its beneficial to use fewer cores per node.
The best performance after 4,000 nodes is achieved by using
4 cores per node, computing the tree in 0.85s at 8000 nodes,
but even this has poor scaling behavior and the execution
time tends to rise at 16,000 nodes to 0.86s. In general, we
see a trend that using lower number of cores per node after
4,000 nodes gives better performance, but at the same time
loses scaling efficiency quite fast when the node count is fur-
ther increased as seen in the case for 8 cores per node and
4 cores per node.

Lifted Flame dataset. As shown in Figure 3 we see
similar behavior as in the HCCI dataset but in this case the
scaling efficiency drops rapidly past 720 nodes when using
all the cores on the node. The execution time reduces by

just 11% going from 6.49s at 720 nodes(11,520 cores) to
5.78s at 1,440 nodes (23,040 cores). As this dataset has a
concentration of features at the center of the domain, there
is an inherent load imbalance and hence we experience poor
scalability as compared HCCI. As seen in Figure 3b, the
execution time while using all the cores in the nodes reduces
marginally after 1, 875 from 5.73s to 5.34s at 3,750 nodes,
but slowly tends to rise again and eventually matches the
execution time of a single core run at machine scale. In
this dataset we observe that using 4 cores per node also
loses scaling efficiency and the best performance at scale is
achieved by using 2 cores per node computing the tree in
4.47s.

Discussion. Based on the performance and scalability
behavior, we see that using all cores of a node results in
good performance initially but we reach a point where the
performance for this strategy starts to dip after which, using
fewer cores per node and on-node data movement provides
better performance. Extrapolating this plot, for higher node
counts, one would use fewer and fewer cores per node until
even using only a single core would exhibit poor scalability.
At this point one would have to use off-node data movement
to further reduce the core count by aggregating the data
onto a smaller subset of nodes. However future high-end
systems are expected to have a constant or even decreasing
number of nodes compared to existing systems. As a result
it seems unlikely that in the future an off-node data transfer
would outperform intra-node aggregation. This is especially
true as off-node communication would further increase the
power consumption as well as the software complexity when
compared to the shared memory exchanges within a node.

3.2 Power Analysis and Study of Trade-offs

3.2.1 Hardware Setup
The power-centric evaluation has been conducted on the

NSF-funded research instrument “Computational and dAta
Platform for Energy efficiency Research” (CAPER). This is
an eight-node cluster based on SuperMicro SYS-4027GR-
TRT system, which is capable of housing concurrently, in
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Figure 3: Time taken by the analysis on Titan for (a) the lifted data set on various node counts by utilizing 1, 2, 3, 4, 8 or
16 cores per node. (b) A zoomed in view with only the higher range of node counts. We see that using fewer cores per node
gives better performance.

one node up to eight general-purpose graphical processing
units (GPGPU), or eight Intel many-integrated-core (MIC)
coprocessors – or any eight-card combination of the two;
and up to 48 hard disk drives (HDD), or solid-state drives
(SSD). However, the configuration used in this experimental
evaluation features servers with two Intel Xeon Ivy Bridge
E5-2650v2 (16 cores/node), 128GB of DRAM, and Infini-
band FDR network connectivity. Accelerators were not de-
ployed. This platform also mirrors key architectural charac-
teristics of high-end system, which allow us to extrapolate
our models to larger systems and make projections towards
exascale co-design. Furthermore, CAPER is instrumented
with both coarse- and fine-grained power metering at server
level – an instrumented Raritan PDU provides power mea-
surements at 1Hz, and a Yokogawa DL850E ScopeCorder
data acquisition recorder provides power measurements from
current and voltage modules. Our experimental evaluation
was conducted using the fine-grained instrumentation sys-
tem at server level with power readings at 50Hz. Power
readings were obtained integrating current and voltage read-
ings at 500KHz, which allowed a high accuracy level. The
fine-grained metering capability is essential in this work be-
cause the execution time of the studied data analysis is very
short and power/energy cannot be measured appropriately
with typical PDU-level power metering capability. Network
power measurements were based on server-level power mea-
surements as the infiniband FDR switch didn’t show power
variability (i.e., can be considered static power) as existing
studies [16] already pointed out.

3.2.2 “Power-friendly” Problem Implementation
In our experiments we used an appropriately downscaled

version of the problem to understand its power behavior.
We also had to take into account power considerations to
let us capture the power behavior associated to the data
restructuring and in-situ merge-tree computation.

Figure 4 shows the system power dissipation over time
for two implementations of the downscaled version of the
problem with HCCI data set, and using 128 MPI processes

and 1 core per node. As detailed in the right figure, we
introduced a one-second sleep call before and after the data
restructuring to better differentiate the different phases of
the program. The sleep call is performed by the master MPI
rank and the rest of MPI processes are on a barrier.

While the left plot uses traditional synchronous MPI col-
lective operations, the right plot uses asynchronous MPI col-
lective operations available in MPI 3.0. The left figure illus-
trates how power dissipation is maximized not only during
data load, data restructuring and merge-tree phases but also
during the sleep periods. This is explained due to the fact
that synchronous collective operations are designed for per-
formance (i.e., busy waiting) therefore require a significant
amount of power. However, the right figure shows how us-
ing asynchronous MPI collectives the power is significantly
reduced during idle periods (i.e., sleep calls).

Our implementation based on asynchronous MPI collec-
tives uses MPI Ibarrier, MPI Iallgather and MPI Iallreduce
operations and (nano) sleep periods of 500ns in a MPI Test
loop. There is no significant performance impact as these
collective operations are not used intensively; however, it
significantly impacts energy consumption, but more impor-
tantly, power which is a critical concern in current and next-
generation high-end systems.

This observation clearly supports that “power-friendly”
implementations of both MPI codes and runtimes need to
be considered at scale.

3.2.3 Power Behavior Analysis
In order to understand the power behavior of the in-situ

analysis at scale, we simulated an equivalent workload on
CAPER as Titan by providing each MPI process the same
amount of data as it would be allocated at large scale on
Titan.

Figures 5 and 6 display the execution time required for
the data restructuring and in-situ merge-tree computation,
the system energy consumption (i.e., the energy consumed
by all CAPER nodes) and average active power (also known
as dynamic power). Active power does not consider the
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Figure 4: System power dissipation over time for HCCI using 128 MPI processes and 1 core per node. Note that Y axes of
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Figure 5: Execution time, energy consumption and active power dissipation on CAPER for the HCCI data set and the data
configurations associated to the two different Titan sizes.
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Figure 6: Execution time, energy consumption and active power dissipation on CAPER for the Lifted flame data set and the
data configurations associated to the two different Titan sizes.

idle power, which is the nominal power dissipation when the
system is idle. We use active power to isolate the power re-
quirements of the in-situ analysis and let us make projections
to larger scale. The figures present the results for different
configurations and both HCCI and Lifted Flame data sets.
The “Base” configuration represents in-situ analysis using 16
cores per node. The “1 node (8 core/node)” and “2 nodes (4
cores/node)” configurations use a reduced number of nodes
(one and two, respectively) with higher core counts. The
variability in the measurements was not significant as most
of the metrics are based on averages and/or numerous data
points.

In general, the results show that larger core counts per
node reduces the execution time and energy consumption,
as energy is correlated with execution time; however, the
power dissipation is higher. Since future-generation sys-
tems are expected to be constrained by power, configura-
tions with highest power requirements might not be able to
be run together with simulation codes at scale. As a result,
in-situ analysis may have to tolerate some level of perfor-
mance degradation and therefore higher energy consump-
tion to maintain simulation-analysis workflows running in
leadership-class supercomputers within their power budgets.
Both “1 node (8 core/node)” and “2 nodes (4 cores/node)”
configurations consider the static energy consumption of all
nodes in the system. This is based on the assumption that
in-situ analysis will run across the platform together with
the simulation. Further, while it significantly impacts energy
consumption, average active power is comparable (or lower)
to the other configurations. The figures also show that “1
node (8 core/node)” and “1 core/node” (using 8 nodes) con-

figurations present similar results. These two observations
present opportunities for exploiting available cores when the
cost of data movement is not in the critical path or the avail-
able resources have advanced capabilities (e.g., closer to fast
data storage such as flash-based burst buffers). Figures 2
and 3 showed that, at scale, the on-node gathering might
not only be fastest; however, Figures 5 and 6 support that
it is always more power efficient. Furthermore, the off-node
aggregation is at best equal in power to on-node and that is
without considering the power for data transfer, which sup-
ports our argument that off-node is not a viable solution.

3.2.4 Extrapolation to Titan Scale
We extrapolate the measurements obtained with CAPER

to Titan based on its known power requirements and hard-
ware vendor specifications. More specifically, we estimate
the static system power from the power model used in [13],
which is based on the following reasoning. Titan drains
8,209KW at full capacity, which results 439W per node
(from a total of 18,668 nodes). Considering that both dy-
namic and static power for the processor, memory and GPU
are well known, we estimate that Titan nodes’ static power
is ∼61W. The active power is scaled from CAPER to Titan
based on the processors and memory vendor specifications.

Figure 7 illustrates the estimated power dissipation of Ti-
tan at full-system scale for the Lifted Flame data set. Note
that power dissipation in this case is based on maximum
power dissipation from experiments in CAPER because we
are interested in the peak power and not the nominal power.
The plot shows the estimation and also projections using 16
cores per node and 1 core per node as they represent the



upper and lower bounds. The figure shows a difference of
50KW between the two configurations; the rest of configura-
tions are comprised between these two. Taking into account
that the data analysis will run in-situ with CPU-intensive
computations (i.e., simulation codes) we might not be able
to use larger core counts due to the power constraints.

Figure 7 also illustrates different projections with the as-
sumption that future systems will be more energy efficient
and therefore their static power will be reduced. Figure 7
displays projections assuming systems with 2-10% lower static
power than Titan. The figure shows that 4% more efficient
hardware would allow using 16 cores at the same power
budget that 1 core/node in the current Titan architecture.
This observation give us a baseline to understand what level
of energy efficiency improvement is required to execute the
in-situ analysis without performance degradation and how
much degradation has to be tolerated given specific design
choices.
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Figure 7: Power extrapolation to Titan-scale based on ex-
ecutions in CAPER and power projections for different en-
ergy efficiency system design choices (i.e., reduced static
power dissipation in 2-10%).

4. CONCLUSION
This paper evaluated three in-situ analysis strategies de-

pending on the way the compute resources are used for the
analysis: i) using all the compute cores for the analysis with-
out any a priori data movement, ii) on-node data movement
and using fewer cores from each of the compute nodes, and
iii) off-node data movement and using a subset of the com-
pute nodes for performing the analysis. We evaluated the
costs incurred by each of the above strategies in terms of
performance, scalability and power. For our experimental
evaluation, we deployed the merge-tree computation in-situ
using the above mentioned strategies at full machine scale
(16,000 nodes) on Titan supercomputer for the performance
and scalability analysis. We also performed scaled but equiv-
alent experiments on CAPER with fine-grained power me-
tering to understand the power behavior of these strategies.
Using the obtained power behavior, we extrapolated the
power requirements in Titan and made projections based
on energy efficiency design choices.

Based on our analysis, we conclude that up to a certain
number of nodes using all the cores for analysis gives best

performance and consumes lower energy; however, it re-
quires significantly higher power. Furthermore, we observed
that using all cores per node at full machine scale is not
scalable hence we use fewer cores with on-node data move-
ment which gives better performance, scalability and power
efficiency. Based also on our findings and extrapolating our
results to even larger node counts than the available in Ti-
tan, we expect this strategy to also stop scaling. In this
case, making use of a subset of the compute resources would
be a viable choice. However, future high-end systems are
expected to have nodes with larger core counts and fewer
nodes. In this case, using fewer cores per node for analysis
purposes is expected to be an optimum choice and more re-
search effort should be devoted towards developing in-situ
analysis techniques following this strategy.

Our ongoing work also includes the study of deep memory
hierarchies using different memory devices (e.g., NVRAM)
as the analysis is expected to be co-located with simulation
codes on the same physical resources thus main memory
capacity and bandwidth may be very limited.
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