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Abstract

There is increasing interest in investigating brain function based on functional con-

nectivity networks (FCN) obtained from resting-state functional magnetic resonance

imaging (fMRI). FCNs, typically obtained using measures of time series association

such as Pearson's correlation, are sensitive to data acquisition parameters such as

sampling period. This introduces non-neural variability in data pooled from different

acquisition protocols and MRI scanners, negating the advantages of larger sample

sizes in pooled data. To address this, we hypothesize that the topology or shape of

brain networks must be preserved irrespective of how densely it is sampled, and met-

rics which capture this topology may be statistically similar across sampling periods,

thereby alleviating this source of non-neural variability. Accordingly, we present an

end-to-end pipeline that uses persistent homology (PH), a branch of topological data

analysis, to demonstrate similarity across FCNs acquired at different temporal sam-

pling periods. PH, as a technique, extracts topological features by capturing the net-

work organization across all continuous threshold values, as opposed to graph

theoretic methods, which fix a discrete network topology by thresholding the con-

nectivity matrix. The extracted topological features are encoded in the form of per-

sistent diagrams that can be compared against one another using the earth-moving

metric, also popularly known as the Wasserstein distance. We extract topological

features from three data cohorts, each acquired at different temporal sampling

periods and demonstrate that these features are statistically the same, hence, empiri-

cally showing that PH may be robust to changes in data acquisition parameters such

as sampling period.
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1 | INTRODUCTION

Studying the functional and anatomical connectivity of the human

brain has given us a deeper understanding of the characteristics of the

brain, from microscale connectivity between single neurons to macro-

scale connectivity between regions of interest in whole brain images.

One of the routinely employed approaches for characterizing macro-

scale connectivity utilizes measures of statistical association (such as

Pearson's correlation) obtained from resting-state functional magnetic

resonance imaging (rs-fMRI) times series corresponding to specific

ROIs in the human brain. The connectivity matrix thus obtained is an

algebraic representation of the weighted brain network, which shows

the relationship between all pairs of nodes.

Functional connectivity obtained from rs-fMRI has been shown

to be extremely sensitive to mental health disorders (Fornito &

Bullmore, 2010) as well as predictive of behavior in healthy individuals

(Miller et al., 2016). This has kindled interest in using functional con-

nectivity networks (FCNs) as potential biomarkers of mental disorders.

The sensitivity and specificity of these biomarkers and their generaliz-

ability to the general population seem to increase with sample size

(Schnack & Kahn, 2016). However, acquiring data from larger samples

at any given site can be economically and logistically prohibitive.

Therefore, there has been a recent impetus toward post-hoc aggrega-

tion of data acquired at different sites to form larger datasets. Exam-

ples include the Autism Brain Imaging Data Exchange (ABIDE; Di

Martino et al., 2014) and ADHD-200 (Bellec et al., 2017). In such large

publicly available datasets, it has been found that biomarkers do not

generalize well to data acquired at different sites (Abraham

et al., 2017; Khalili-Mahani et al., 2017). This has been attributed to

the fact that MRI scanners and data acquisition protocols are different

across sites, and this induces an element of non-neural variability in

the data that tend to make it difficult for us to discover consistent

inter-group FCN differences that are at least partly neural in origin.

Topological data analysis (TDA) is an emerging field that has

found recent applications in functional neuroimaging. Traditionally,

graph-theoretic tools, which can be construed as special cases of the

more generic concepts of TDA, have been extensively used to study

and quantify FCNs. More recently, advanced tools from TDA, such as

persistent homology (PH) (Rubinov & Sporns, 2010) have been used

to study complex networks. PH investigates connections between dif-

ferent parts of networks using algorithms designed to encode and

measure the significance of relationships across multiple scales

(thresholds). In the context of networks, topological features refer to

the 0-, 1-, and 2-dimensional homology groups of a metric space that

describe its connected components, tunnels, and voids, respectively.

Most graph-theoretic techniques for analyzing weighted brain net-

works can only measure the topological features of the network at a

specific threshold and cannot capture how these features change as

the threshold value is varied. PH provides a principled approach to

quantifying these features for all thresholds; more precisely, it can

track when features (such as connected components, loops, and voids)

are created and destroyed with varying scales (threshold). The tech-

nique quantifies the individual topological events (birth and death of

features) in the graph according to their significance (or persistence).

This persistence is represented in the form of barcodes, which encode

the threshold at which features appear and disappear. The barcodes

encoding these sets of features can be seen as a fingerprint for a

graph. What makes this fingerprint useful is the presence of metrics

such as Wasserstein distance (WD; Edelsbrunner, 2013;

Vallender, 1974) that can be used to quantify the statistical difference

between two barcodes robustly. The WD is robust to small perturba-

tions in the data and hence can be used to compare and establish sim-

ilarities between persistent diagrams. We use this ability in our

pipeline to establish similarities between barcodes obtained from

brain networks derived from data acquired with different acquisition

parameters (such as sampling period).

The input to our TDA-based pipeline is subject-specific FCNs

from three data cohorts, corresponding to data acquired from the

same individuals at three different sampling periods (TR): 645 ms,

1400 ms, and 2500 ms. The cohort consists of rs-fMRI data from

316 subjects (totaling 3 � 316 scans). In our pipeline, the topological

features of each network instance are extracted using PH and

encoded with a barcode. The barcodes are compared against each

other by using the WD. In particular, we perform two sets of experi-

ments to demonstrate that the FCNs indeed capture the same struc-

ture irrespective of the temporal sampling periods: (a) making a direct

pairwise comparison of the same subjects across different temporal

sampling periods and (b) performing pairwise comparison within a

cohort (same temporal sampling period) to extract the overall pattern

of subjects and then comparing that pattern across the sampling

periods. The statistical analysis is made possible because the barcodes

(our metric) can be compared against one another using the WD

(Edelsbrunner, 2013; Vallender, 1974). In our first set of experiments,

we perform pairwise WD computation of the same subjects but

between different sampling periods (across the data cohorts), and this

yields three groups of measurements: WD between (645 and

1400 ms), (1400 and 2500 ms), and (2500 and 645 ms). We then

demonstrate similarity among these distributions by performing

ANOVA and t-tests, further establishing the fact that FCNs capture

similar information, irrespective of the data acquisition parameters. In

our second set of experiments, we calculate pairwise WD between

persistence diagrams of all 316 subjects within the same sampling

rate. As we have data from three TRs, this step yields three sets of

adjacency matrices (of size 316 � 316). To apply statistical compari-

son in this high dimensional data, we perform multidimensional scaling

(MDS; Carroll & Arabie, 1998; Cox & Cox, 2008) with two compo-

nents that reduces it to a 2D space and then apply clustering tech-

niques to segregate the subjects into clusters. Finally, we analyze the

number of overlapping subjects across the clusters to examine

the similarity between the subjects across various parameters using

the PH-based pipeline. In particular, our paper makes the following

three contributions to the literature:

1. Demonstrate that the barcode obtained from the PH of resting

state fMRI data is a compact representation of topological infor-

mation of an FCN.
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2. Present an end-to-end pipeline that uses PH-based techniques to

demonstrate that TDA-based metrics derived from FCN networks

are statistically similar even when data acquisition parameters such

as temporal sampling periods (TR) are varied, potentially removing

a source of noise in multi-site case–control studies, thereby

improving the effect sizes in group comparisons.

3. Present an open-source and reproducible codebase for all compo-

nents of our work. Code, including scripts, documentation, and

data, can be found here: https://github.com/harp-lab/brainPH

The rest of the paper is organized as follows: In Section 2, we

present relevant related work covering both graph-based and

topology-based FCN analysis frameworks. In Section 3, we present

our end-to-end TDA pipeline comprising four key steps. Finally, in

Section 4, we present the result of applying our methods to real data.

And we then conclude with a discussion in Section 5 and a conclusion

in Section 6.

2 | RELATED WORK

Existing methods in analyzing and characterizing FCNs rely heavily on

graph analysis measures (Andellini et al., 2015; Aurich et al., 2015;

Ginestet et al., 2014; Termenon et al., 2016) such as clustering coeffi-

cient and node degree. These measures are well known to summarize

a single weighted network and also to compare FCNs within a collec-

tion of networks. For network comparison, typically, there are two

cases: comparing two individual networks or comparing two collec-

tions of networks where the networks may be paired or unpaired

between collections. Networks can be compared either at single

nodes and links (Ginestet et al., 2014; Narayan & Allen, 2015), or via

some functional or transform summarizing each network (Simpson

et al., 2013) using graph analysis approaches. Graph analysis mea-

sures, however, have been criticized for being dependent on the

choice of network link threshold (Garrison et al., 2015). Graph analysis

methods typically use binary measures of link strength, ignoring the

weights of links. However, not all FCN links are equal. Some links are

expected to be detected more frequently or be more strongly

detected than others, and recognizing these differences in link

strength allows us to understand the function within networks.

Weighted graph analysis methods have been proposed (Rubinov &

Sporns, 2010), but are still susceptible to variation with respect to net-

work density (Ginestet et al., 2014). Graph analysis of weighted brain

networks at multiple thresholds has also been proposed (Drakesmith

et al., 2015).

In recent years, multi-site fMRI studies have become more com-

mon as they allow for faster participant recruitment and larger sample

sizes, resulting in increased statistical power (Biswal et al., 2010;

Noble et al., 2017). This is especially important when studying rare

disorders, subtle effects, and diverse populations (Dansereau

et al., 2017). However, non-biological variability in these studies can

arise from differences in scanner manufacturers, imaging acquisition

parameters, and other factors (Shinohara et al., 2017). These sources

of variability can decrease statistical power and produce misleading

results. Many studies have reported site or scanner effects in fMRI

data, but only a few have attempted to standardize protocols and

image acquisition parameters to mitigate these effects (Chavez

et al., 2018; Shinohara et al., 2017). Despite efforts to standardize

protocols and image acquisition parameters, scanner-to-scanner varia-

tion caused by the use of scanners from different manufacturers

remains present (Noble et al., 2017). An independent component anal-

ysis (ICA)-based approach was employed in one study to decrease

scanner differences in multi-site resting-state fMRI post-acquisition

(Feis et al., 2015). However, this approach was not completely suc-

cessful in eliminating the structured noise that arises from the use of

different scanners (Yu et al., 2018). Thus, the generation of harmoni-

zation techniques for multi-site data has become an emerging topic in

neuroimaging (Roffet et al., 2022). ComBat is one of the prominent

and fast harmonization methods that can reduce the multi-site or

multi-scanner effect (Bell et al., 2022; Fortin et al., 2017, 2018;

Ingalhalikar et al., 2021; Yu et al., 2018). Existing literature indicates

that ComBat may not completely retain inter-subject biological vari-

ability following harmonization, particularly in the presence of non-

linear scanner contributions (Cetin-Karayumak et al., 2020, 2023).

Even though this was shown for diffusion data, the principles are

equally applicable to fMRI data.

TDA of networks goes beyond graph-theoretic analysis by utiliz-

ing tools from computational topology to describe the architecture of

networks or data structures in more flexible ways (Edelsbrunner &

Harer, 2022; Ghrist, 2008). In particular, it encodes higher-order (not

just pairwise) interactions in the system and studies the

topological features of a network across all possible thresholds. PH,

an advanced technique in TDA, is an emerging tool for studying com-

plex networks, including brain networks (Cassidy et al., 2015;

Dabaghian et al., 2012; Lee et al., 2011). PH-based methods have

shown promising results in modeling transitions between brain states

in fMRI data (Saggar et al., 2018). There are many excellent introduc-

tions to PH, such as the books (Ghrist, 2014; Oudot, 2015;

Zomorodian, 2005) and the papers (Edelsbrunner & Harer, 2008a,

2022; Ghrist, 2008; Patania et al., 2017; Weinberger, 2011).

3 | METHODS

In a typical connectivity analysis framework, the correlation matrix

(FCN) is thresholded to obtain a graph of the brain network. The

graph thus obtained merely captures a snapshot of the FCN whose

topology is dictated by the choice of the threshold. The onus, there-

fore, is to pick the correct threshold, which is a very challenging task,

and moreover, usually, one threshold (and one graph) is not enough to

capture the complex connectivity information of the FCN (see

Figure 1). PH, a branch of TDA, allows one to capture the change of

topological structures over the whole range of thresholds. Our

approach thus uses PH to extract topological features from rs-fMRI

FCNs. The features are used to demonstrate a notion of similarity

across FCNs extracted from datasets acquired with different data

KUMAR ET AL. 3
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acquisition parameters (temporal sampling rate in our case). Our pipe-

line consists of three key steps: extracting FCNs from fMRI data, fol-

lowed by PH-based TDA that extracts topological features from

FCNs, and finally, statistical analysis to find similarities/differences

among the features extracted from data acquired with different TRs.

The main goals of this work are to demonstrate the efficacy of PH in

extracting relevant features from fMRI networks and show that these

techniques are robust to changes in data acquisition parameters. The

end-to-end pipeline of our TDA-based framework can be detailed in

the following steps:

1. Reduce spatiotemporal fMRI data to FCNs: rs-fMRI data are sub-

jected to a standard pre-processing pipeline followed by estima-

tion of FCNs using Pearson correlation between time series

extracted from pre-defined regions across the brain (Section 3.1).

2. Embed FCNs in metric space: This is a pre-processing step

required for the execution of TDA. It yields a weighted graph that

encodes the correlation between every node pair (Section 3.2).

3. Apply PH to metric space: This step yields barcodes/persistent dia-

grams. These barcodes/persistent diagrams act as fingerprints of

an FCN (Section 3.3).

4. Statistical analysis on persistent diagrams: Two kinds of analysis

are performed; we show methods for both comparing the

architectures within a collection of networks and between

collections of networks; both analyses demonstrate that PH-based

techniques are robust to changes in data-acquisition parameters

(Section 3.4).

3.1 | Experimental data and network construction

Structural T1-weighted and rs-fMRI data were obtained from the

openly available Enhanced Nathan Kline Institute Rockland Sample

database (NKI-RS; Nooner et al., 2012). The MRI data were obtained

using a 3 T Siemens Magnetom Tim Trio scanner. The data acquisition

parameters for the T1-weighted structural data were: 1.0 mm isotro-

pic voxels with 176 slices, repetition time (TR) = 1900 ms, echo time

(TE) = 2.52 ms, and field of view (FOV) = 250 � 250. Resting-state

fMRI data were acquired using multiband echo-planar imaging (EPI;

Feinberg et al., 2010) from each subject using three different acquisi-

tion protocols with different parameters as follows: (1) 3.0 mm isotro-

pic voxels with 40 slices, TR = 645 ms, TE = 30 ms, FOV =

222 � 222 mm, number of volumes = 900, and multi-band

factor = 4. (2) 2.0 mm isotropic voxels with 64 slices, TR = 1400 ms,

TE = 30 ms, FOV = 224 � 224 mm, number of volumes = 404 and

A

B

C

D

E

A B C D E

A 0 2.83 6.08 6.08 3.6

B 2.83 0 4.12 5 4.12

C 6.08 4.12 0 2 4.24

D 6.08 5 2 0 3.16

E 3.6 3.6 4.24 3.16 0

A

B

C

D

E

A

B

C

D

E

Threshold: 3.2

Threshold: 5

F IGURE 1 An example of graph analytics-based approach for analysis of FCNs. Here, the two thresholds yield graphs of completely different
topologies.
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multi-band factor = 4. (3) 2.0 mm isotropic voxels with 38 slices,

TR = 2500 ms, TE = 30 ms; FOV = 216 � 216 mm, number of

volumes = 120 and multi-band factor = 1. It can be seen that even

though we identify the three datasets from each subject with the cor-

responding TR, the data differ in many other scan parameters, such as

the number of volumes, multiband factor, FOV and, voxel size.

The MRI data were subjected to a standard pre-processing pipe-

line, including the first five volume removal, slice time correction, and

motion correction. T1-weighted anatomical images were coregistered

to the mean functional images, using which the fMRI images were

spatially registered to a standard MNI152 template. Nuisance vari-

ables such as low-frequency drifts, and motion parameters were

regressed out. Unwanted physiological fluctuations (white-matter and

cerebrospinal fluid signals) were removed using aCOMPCor (anatomi-

cal component-based noise correction). After removing subjects that

failed quality control, 316 subjects were identified to have usable data

from all three acquisition protocols. Subsequently, mean time series

from 113 brain regions (obtained using the Yeo parcellation template;

Thomas Yeo et al., 2011) were obtained for each subject and acquisi-

tion protocol. Using Pearson's correlation, FCN matrices were esti-

mated from these mean time series. At the end of this phase, we end

up with one weighted network represented per fMRI scan. The net-

work is stored in the form of a symmetric adjacency matrix W of

dimension 113�113, where wij corresponds to the correlation coeffi-

cient between brain parcels (nodes) i and j. For the three data cohorts

and 316 subjects per cohort, we get 948 3�336ð Þ adjacency matri-

ces. The FCN for subject 31 for the three sampling periods

(645, 1400, and 2500ms) is shown in Figure 2 as a representative

example.

3.2 | Mapping network to metric space

Well-understood techniques in TDA typically focus on the study of

point cloud data under the metric space setting. In order to study

FCN data, our approach is to embed the weighted graph in a metric

space where topological techniques can be applied. Once a network is

embedded in the metric space, topological features in the form of bar-

codes can be effectively extracted using PH.

In this paper, the association between any two nodes u and v in

the brain network is measured by their Pearson's correlation coeffi-

cients corr u,vð Þ. The idea is to map this association to a distance mea-

sure such that higher correlations between nodes map to smaller

distances. We use the following mapping to all 3�316 (316 subjects

across three temporal frequencies) FCNs:

d u,vð Þ¼1�corr u,vð Þ

Although other measures of association between time series have

been explored for constructing FCNs, Pearson's correlation is by far

the most popular method, and the mentioned mapping is used in

existing literature (Cassidy et al., 2015; Edelsbrunner & Harer, 2008b;

Lee et al., 2011, 2012; Smith et al., 2011). That said, the pipeline

proposed here does not depend on how the FCN is constructed and

could be applied to scenarios where FCN is constructed using mea-

sures other than Pearson's correlation. In such cases, the mapping of

the network to metric space would have to be adapted accordingly.

The applied correlation value will be different for correlated and anti-

correlated nodes. As the correlation between two nodes increases,

the distance between them will decrease. We also experiment with

positive and negative correlation separately and observe that the pos-

itive correlation produces a similar result to the original dataset (dis-

cussed in the supplement). We hypothesize that this is due to the fact

that only 10% of all connections (across all subjects) have a negative

correlation; therefore, it does not have a major impact on the analysis.

Hence, we have included both positive and negative correlations in

our analyses.

3.3 | Extracting topological features

We apply PH on the metric space representation of brain fMRI graphs

to extract topological features. To describe our process, we first

briefly review PH, including barcodes and the WD metric. For more

details and background on persistence homology, see (Edelsbrunner &

Harer, 2008a, 2022).

3.3.1 | Topological features

Homology deals with the topological features of a space. More pre-

cisely, the homology of a topological space  is represented by its

homology groups H0 ð Þ, H1 ð Þ, and H2 ð Þ …, where the kth homology

group Hk ð Þ describes, informally, the number of k-dimensional holes

in . The 0-, 1-, and 2-dimensional homology groups, denoted as

H0 ð Þ, H1 ð Þ, and H2 ð Þ, respectively, correspond to (connected)

components, tunnels, and voids of . In our experimental setup, we

focus on the 0-dimensional topological features of an FCN (W), which

correspond to H0 ð Þ of its metric space representation. The

0-dimensional topological features, roughly speaking, capture con-

nected components by vertices in the instances.

3.3.2 | Persistent homology

In practice, these features, such as connected components, loops, and

voids in an FCN, can also be captured by the traditional graph analytic

approach using thresholding. An example of this pipeline is shown in

Figure 1; here, we have an FCN with five nodes and the pairwise dis-

tance between every node. We demonstrate how different thresholds

can yield different instances of graphs with completely different

topologies and connectivity. For instance, a threshold of 3.2 yields a

sparse graph with two connected components, and a threshold of

5 yields a relatively denser graph with only one connected compo-

nent. In practice, there does not exist a unique scale (threshold) that

captures the topological structure and connectivity of a weighted

KUMAR ET AL. 5
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FCN. Instead of trying to determine one proper threshold that may

not really capture the structure of the FCN, we decided to look at the

overall change of topological structure over the whole range of

thresholds using PH.

PH is a multi-scale notion of homology that captures the change

of topological structures over the whole range of thresholds. Similar

to the example of Figure 1, we start with a set F of point cloud data

consisting of p points, with a known distance between every pair of

points. Two points i and j will be connected by an edge if the distance

d i, jð Þ is smaller than ϵ, forming a 1-simplex. Similarly, a 2-simplex

(a triangular face) will be formed among three points if there is an

edge between every pair of points. The generated graph is a Rips

complex and denoted by Rips F,ϵð Þ.
Figure 3c–f shows a toy example of constructed Rips complex

with different ϵ. It can be seen that Rips F,tð Þ � Rips F,sð Þ whenever

t≤ s. This topological transition with increasing filtration value ϵ is

called as a Rips filtration and is the key idea behind PH.

More formally, for a real number t≥0, a Rips complex denoted as

Rips F,tð Þ, is formed by considering a set of balls of radius t=2 centered

at points in F. A 1-simplex (an edge) is formed between two points in

F if and only if their balls intersect (see Figure 3c). Given a finite point

set F, continuously increasing the radius forms a one-parameter family

of nested unions of balls; and, correspondingly, a one-parameter fam-

ily of nested Rips complexes referred to as a Rips filtration. Let

0¼ r0 ≤ r1 ≤ r2 ≤ r3…≤ rm denote a finite sequence of increasing radius.

The Rips filtration is a sequence of Rips complexes connected by

inclusions, R r0ð Þ�R r1ð Þ�R r2ð Þ�R r3ð Þ�…�R rmð Þ.
As t increases, we focus on the important events when the topol-

ogy of the space changes. This change occurs when components

merge with one another to form larger components. We track the

birth and death times of each topological feature (a component or a

tunnel), and visualize them in the form of barcodes. The lifetime of

a feature (tdeath� tbirth) is called its persistence. In Figure 3, each col-

ored point (red, green, blue, purple, and yellow) is born (appears) at

t¼0 as an independent (connected) component. At t¼2, the blue

component merges with the purple component and dies (disappears).

Therefore, the blue component has a persistence of 2. At t¼2:2, the

yellow component merges into the purple component and dies.

Hence, it has a persistence of 2:2. Similarly, the green component dies

at t¼2:8, and the red component dies at t¼3:15. The purple compo-

nent born at time 0 never dies, and thus it has a persistence of ∞. In

Figure 3g, we visualize the appearance (birth), the disappearance

(death), and the persistence of these topological features via the bar-

code, where each feature is summarized by a horizontal bar that

begins at its birth time and ends at its death time in the X-axis. The Y-

axis depicts that the bars are from 0-dimensional homology groups

(H0 ð Þ; Ghrist, 2008). In our setting, for every FCN, all 113 vertices

form a finite set of points F, and di encodes the pairwise distance

among points in F. We apply PH on all our 3�316 FCNs (3 scans for

every 316 subject) and extract its barcode. The right part of Figure 2

shows the barcodes generated from experimental fMRI data from an

illustrative subject. We used the Gudhi library to compute the

0-dimensional persistence diagram from the simplex tree (The GUDHI

Project, 2015). As we set min_persistence to zero, any value greater

than this in the simplex tree will be considered for computing the per-

sistent diagram. For range, the method finds all the barcodes until

there is only one connected component, as we set max_dimension to

1 in simplex tree creation.

T = 0 T = 1 T = 2 T = 2.2

T = 2.8 T = 3.15

T            2 2.2    2.8     3.15

(a) (b) (c) (d)

(e) (f) (g)

H0

F IGURE 3 Computing the persistent homology of a point cloud. At T = 0, there are five topological features, corresponding to the five
connected components, as we increase T, we see these connected components merge. (c–f), each shows a T where connected components
merge, which corresponds to the death of topological features. The birth and death of these topological features are captured in the form of
barcodes shown in (g).
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3.4 | Statistical inferencing

A barcode can be interchanged with a persistent diagram without the

loss of any information. A barcode can be drawn in the form of persis-

tent diagrams that records the birth threshold (X-axis) and death

threshold (Y-axis) of all topological features (bars). Every bar of the

barcode is reduced to a point in the persistent diagram. The persistent

diagrams are then used in a statistical inference framework to estab-

lish that PH, in general, is robust to data acquisition parameters such

as sampling rate. The core idea behind the statistical inference frame-

work is our ability to quantify the difference between two persistent

diagrams using the earth moving distance, such as the WD

(Edelsbrunner, 2013; Vallender, 1974).

To quantify the structural difference between two FCN instances

Wi and Wj, we compute the WD between their persistent diagrams.

WD is defined as the minimum value achieved by a perfect matching

between the points (features) of the two persistent diagrams. It is

achieved by capturing the perturbation across every pair of points

(feature) in the diagrams. In particular, the WD measures the similarity

between two persistence diagrams using the sum of all edge lengths

between every feature pair. The ability to compare two persistent dia-

grams using the Wasserstein metrics provides the foundation to

develop our statistical inference framework. The goal is to establish a

notion of similarity between FCNs that are derived at different sam-

pling rates. We perform three kinds of statistical analysis:

(a) comparison across cohorts, (b) comparison within a cohort, and

(c) comparison with traditional FCN analysis. We used the Gudhi

framework (Kerber et al., 2017) to compute the WD between two

persistent diagrams.

3.4.1 | Comparison across cohorts

In this first set of experiments, we perform a comparison of persistent

diagrams across cohorts. In particular, we compute the WD between

the persistent diagram of the same subject but with data acquired at

different sampling rates and other acquisition parameters. Since we

have data at three temporal sampling rates (TR): 645, 1400, and

2500 ms, for each subject, we compute three WD between persistent

diagrams of data acquired at (1) TR = 645 and 1400 ms, (2) TR = 1400

and 2500 ms, and (3) TR = 2500 and 645 ms. For the three pairs, we

get three distributions, each with 316 data points (=number of sub-

jects). We perform the Analysis of Variance (ANOVA) test to demon-

strate statistical similarity among the three distributions. ANOVA is a

collection of statistical models and their associated estimation proce-

dures (such as the variation among and between groups) used to ana-

lyze the differences among means. ANOVA provides a statistical test

of whether two or more population means are equal and therefore

generalizes the t-test beyond two means. The ANOVA test yields a p-

value, and typically in statistics, a high p-value >0:05ð Þ is a strong

indication that distributions have identical means, that is, the null

hypothesis is true. In our case, a high p-value would indicate that

three WD between the pairs is statistically the same data and that the

three data cohorts 645, 1400, and 2500ms are encoding the same

underlying data, and thus would infer that the PH-based technique is

indeed robust to data acquisition parameters. Along with the ANOVA

test, we also perform pairwise t-value tests between the three distri-

butions, establishing statistical similarity across the distributions in a

more conservative sense. An illustration of this pipeline is given in

Figure 4.

F IGURE 4 Comparison of WD across cohorts. Here, WD is obtained by comparing persistent diagrams obtained from the same subjects but
with data acquired using different temporal samplings.
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3.4.2 | Comparison within a cohort

In this second set of experiments, we compute the pairwise WD

between persistence diagrams of subjects within each of the data

cohorts. Since we have data from three sampling periods, we get

three adjacency matrices (of size 316�316) encoding the pairwise

WD for all 316 subjects. An adjacency matrix of 316�316 is repre-

sentative of a high dimensional space (of dimension 316), and it is

often a challenging task to perform an interpretable form of statisti-

cal comparison for high dimensional data. We, therefore, use the

commonly used dimensionality reduction technique, MDS. For an

adjacency matrix, storing the distances between each pair of

objects in a set and a chosen number of dimensions, N, an MDS

algorithm places each object into N-dimensional space (N is lower-

dimensional) such that the between-object distances are preserved as

well as possible. We use N¼2 in our experiments, which results in

scatter plots. Applying clustering to the scatter plot generated by

MDS is common, yielding segregated groups/clusters. Therefore, we

apply k-means clustering using the silhouette coefficient to

automatically divide the subjects into clusters. As the ground truth of

the clustering is not known, we specify the number of clusters using

the silhouette coefficient (Pedregosa et al., 2011; Rousseeuw, 1987).

We perform this pipeline on all three data cohorts corresponding to

the three temporal sampling frequencies. Only the number of clusters

is not a good parameter to analyze the similarity of subjects across dif-

ferent TRs—as this method is coarse-grained and loses the identity

information of the subjects. We, therefore, performed further fine-

grained analysis on the clustering result, taking into account the iden-

tities of all subjects. In particular, we compute the set inter-

section (overlaps) of subjects across the clusters to keep the identity

information of the subjects. Ideally, the same set of subjects should be

clustered together in the three TR plots. The higher number of over-

lapping subjects across the clusters will indicate the higher similarity

of subjects across different temporal sampling rates. We also compare

the result obtained from original data with a null distribution obtained

from random FC matrices to verify that the set intersection (overlaps)

of subjects across the clusters is statistically significant as compared

to random chance. An illustration of this pipeline is given in Figure 5.

F IGURE 5 Comparison of WD within a given cohort. Here, WD is obtained by comparing persistent diagrams obtained from different
subjects but within the same data cohort, acquired using the same temporal sampling.

KUMAR ET AL. 9
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3.4.3 | Comparison with traditional FCN analysis

The true efficacy of the TDA-based pipeline can be demonstrated fur-

ther by comparing it against the traditional FC analysis pipeline. Tradi-

tionally, raw FCNs are used instead of using a topological feature, for

example, a common pipeline is to perform ANOVA across all subjects

for every node of the raw FCN. This gives one p-value per entry of

the FCN. With our FCN of size 113�113, we get 113�113 p-values.

The p-values can then be thresholded using a typical significance level

of α=0.05. A value of 1 is assigned if the p-value is less than 0.05, or

else 0 is assigned. The thresholded output can then be analyzed to

see if a majority of values are less than 1 or not. If a majority of values

are 1 (p-value less than 0.05), then this is a strong indication that FC

is finding differences in the brain network of the same individual con-

structed from data acquired with different parameters. This is not

ideal since we want a metric that is robust to non-neural variability in

the data.

4 | RESULTS

The first step (Section 3.1) yields one FCN per fMRI scan, stored in

the form of an adjacency matrix. We obtain a total of 3�316 matri-

ces, corresponding to three scans of different temporal samplings for

316 subjects. As an illustrative example, we have plotted the FCN for

subject 31 for the three data acquisition protocols in Figure 2. The

next step (Section 3.2) embeds the FCN in a metric space, limiting

the entries between 0 and 1. Finally, PH is applied to the metric space

FCN to extract dimension-0 features, which are stored in the form of

persistent barcodes. Figure 2 also shows the barcodes for subject 31

for the three temporal sampling periods. With the barcodes extracted

for all 3�316 fMRI scans, we move on to statistical inference. We

perform two sets of TDA-based experiments, as presented in

Section 3.4, where we compare FCNs across cohorts and within the

cohort.

In our first set of experiments, we compare FCNs across cohorts.

For all 316 subjects, we compute the WD for the following three

pairs: (1) TR = 645 and 1400 ms, (2) TR = 1400 and 2500 ms, and

(3) TR = 2500 and 645 ms. The results of the three distributions (with

316 samples each) are plotted using box plots in Figure 6 (Williamson

et al., 1989). As can be seen, the box plots are a strong qualitative

indication of the similarity among the three distributions, with the

median, interquartile region, minimum and maximum (excluding

the outliers) all aligning across the three distributions. To further test

their statistical equivalence, an ANOVA test was performed on these

three distributions. The p-value yielded by the ANOVA test deter-

mines whether the differences between group means are statistically

significant. To determine whether any of the differences between the

means are statistically significant, one typically compares the p-value

to a chosen significance level to assess the null hypothesis. The null

hypothesis states that the population means are all equal. Usually, a

significance level (denoted as α) of 0.05 works well. A significance

level of 0.05 indicates a 5% risk of concluding that a difference exists

when there is no actual difference. The ANOVA test on our distribu-

tion yielded a p-value of 0:29. Since the p-value is greater than the

significance level (α=0.05), implying that the null hypothesis cannot

be rejected, and hence the WD between the three data cohorts

indeed have statistically identical means. In addition to the ANOVA

test, we also performed t-value tests on the three pairs—the results of

which are shown in Table 1. Note that this is a more stringent test as

compared to an ANOVA. As can be seen in Table 1, all the p-values

are greater than 0:05, also implying that the means of WD distribu-

tions for each cohort comparison are statistically similar.

We also investigate the three distributions in isolation. For all the

316 subjects, the WD between FCNs with temporal sampling period

645 and 1400ms, we find that 13% of subjects have a WD less than

2, 65% of subjects have a WD less than 5, and only 1% of subjects

have a WD greater than 10. The mean WD for the three distributions

across all 316 subjects is 4:30, 4:01, and 4:14, respectively.

F IGURE 6 Wasserstein distance computation for all 316 subjects
between the three cohorts: WD (TR = 645 and 1400 ms), WD
(TR = 1400 and 2500 ms), WD (TR = 2500 and 645 ms), yielding
three distributions. The three distributions are plotted using box plots.

TABLE 1 t-values and p-values

obtained by pairwise t-tests comparing
the WDs between data cohorts.

t-value p-value

WD (TR = 645, TR = 1400) WD (TR = 1400, TR = 2500) .059 .088

WD (TR = 1400, TR = 2500) WD (TR = 2500, TR = 645) .460 .519

WD (TR = 2500, TR = 645) WD (TR = 645, TR = 1400) .286 .387

Note: Since all p-values are greater than .05, the means of WD distributions for each cohort comparison

are statistically similar.
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Next, we perform a pairwise WD computation among all 316 sub-

jects for the three data cohorts in the second set of experiments. This

yields three adjacency Að Þ matrices for the three temporal cohorts

where aij correspond to the WD between persistent diagram of sub-

jects i and j. It is difficult to compare adjacency matrices (both statisti-

cally and visually), and therefore we perform dimensionality reduction

using MDS to reduce the matrix (316-dimensional data) to a 2D plane

(2-dimensional data). We plot the MDS plots for the three adjacency

matrices in Figure 7. We also applied clustering on the MDS plots to

segregate the subjects, and we can see that all three cohorts result in

two distinct clusters (as determined by the Silhouette criterion). When

we compute the set intersection (overlaps) of subjects across the clus-

ters of different TRs, we observe 198 out of 316 subjects reside in

the same cluster group for all three TRs. This number rises to 251 sub-

jects for pairwise cluster intersection. This intersection was statisti-

cally very significant (a p-value of 0) when compared with the null

distribution obtained by adopting the same procedure using random

FC matrices. This result is encouraging as it qualitatively confirms the

quantitative result we obtained in the first set of experiments, further

bolstering our hypothesis that PH-based techniques are robust to

data acquisition parameters such as sampling period.

Finally, we perform the third set of experiments detailed in

Section 3. These experiments are not based on TDA and follow the

traditional analysis pipeline. We plot the result of the thresholded

image in Figure 8. It can be seen from the figure that the majority of

pixels are black, which corresponds to a p-value of less than 0.05. In

particular, there are 7732 connections that showed significant differ-

ences in connectivity across the same subjects for data acquired from

different sampling periods versus 5037 connections that did not. This

result strongly indicates that the traditional analysis method fails to

identify connections from the same subjects but acquired with differ-

ent sampling periods as the same connections in a majority of cases.

F IGURE 7 MDS plots of the three data cohorts (TR = 645, 1400, and 2500 ms) have similar structures, and all 316 subjects within the
cohorts are segregated into two clusters. (a) Clustering result on MDS data for TR = 645 ms. (b) Clustering result on MDS data for TR = 1400 ms.
(c) Clustering result on MDS data for TR = 2500 ms.

KUMAR ET AL. 11
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5 | DISCUSSION

MRI scanners across the world have different configurations and field

strengths.1 Data acquired from different scanners with different

parameters have some degree of noise in them due to non-neural var-

iability introduced by different scanner configurations and data acqui-

sition parameters, which makes it difficult for datasets acquired from

different machines to be pooled into one large dataset for analysis

within a single framework. As a result, conducting research on brain

networks obtained from fMRI is primarily concentrated at localized

sites. Such studies are limited by the fact that the number of subjects

that can be scanned at a single scanner is limited, which tends to

reduce the sample size and hence the generalizability of the results.

This can be overcome by conducting multi-site studies with sites that

are geographically closer to the population of interest. However, as

mentioned above, data acquired from different scanners and parame-

ters introduces noise, which reduces the effect of interest that is neu-

ral in origin, and hence reduces the utility of such a multi-site effort.

Our paper aims to address precisely this aspect. Accordingly, we have

proposed PH-based techniques (which are based on TDA) as a means

to overcome noise introduced by non-neural factors such as different

data acquisition parameters and extract the inherent structural topol-

ogy underlying brain networks characterized by fMRI. Computational

topology is known to extract underlying shapes from complex data

structures. We have shown that the topology-based metric for the

brain network is invariant to data acquisition parameters such as sam-

pling period. The metric captures the underlying shape of the brain

network in topological space, thus creating a common ground to

facilitate multi-site data-driven analysis of fMRI datasets (acquired

from different scanners).

We were able to establish the efficacy of the TDA-based pipeline

by comparing it against the traditional data analysis pipeline presented

in Section 3. In a traditional pipeline, raw FCNs are used directly

instead of using a topological feature. The results of this pipeline are a

strong indication that these traditional techniques are not able to

establish similarity across FCNs of the same subjects acquired with

different TRs and acquisition parameters. While the opposite was true

for the TDA-based metric, wherein we showed both qualitatively and

quantitatively that the metric remains statistically invariant across the

same subjects irrespective of the sampling period with which resting-

state fMRI data was acquired. This demonstrates the utility of TDA-

based analysis because, in principle, data acquired using different

parameters from the same subject should still capture the same brain

network. Certain limitations of our work must be kept in mind while

interpreting the results. Even though the sampling period was differ-

ent across the three different acquisitions, some other parameters,

such as number of volumes, multiband factor, FOV, and voxel size,

also varied across the three cohorts. Ideally, we would want to investi-

gate the limits of parameter variability that would show invariance in

the TDA metric by varying only one parameter at a time. This will be

part of our future work in this area. Furthermore, future work can

investigate whether the TDA metric is invariant to differences in other

variables, such as vendors (such as Siemens, GE, and Philips) and scan-

ner models within a given vendor.

6 | CONCLUSION

In this paper, we have demonstrated the efficacy of TDA-based tech-

niques in establishing a notion of similarity between FCN. FCNs of

subjects acquired from different scanners or at different sampling

F IGURE 8 Result after ANOVA test
performed for all 316 subjects for every node of
the FCN. White pixels correspond to those
connections which were significantly different
across the same subjects for data acquired from
different sampling periods.

1For example, the MRI machines available for research in the state of Alabama in the United

States—Siemens 7 T Magnetom and 3 T Verio at Auburn University, Siemens 3 T Prisma at

the University of Alabama Birmingham, Philips 3 T Achieva at the University of South

Alabama, and Siemens 3 T Prisma at the University of Alabama Tuscaloosa—all have different

configurations.
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rates have some degree of noise, reducing the efficacy of traditional

network analysis pipelines. We have used PH to extract topological

features in the form of barcodes from FCNs; these barcodes can then

be used to compare and contrast different FCNs. We demonstrated

that barcodes extracted from scans of the same subject but acquired

with different temporal sampling periods capture the same structure.

We presented two analysis pipelines for TDA-based analysis. In the

first pipeline, we compared scans of the same subject acquired at dif-

ferent sampling rates, and in the second pipeline, we compared scans

of all subjects with the same sampling period. Both our analysis pipe-

lines demonstrated the efficacy of PH in performing analysis of FCNs

that are acquired with differing parameters (such as sampling periods).

Finally, we have open-sourced all our code, script, data, and documen-

tation at https://github.com/harp-lab/brainPH, making this work

reproducible.
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